The study of the morphology and structural, optical, and J-V characterizations of (CH3NH3PbI3) perovskite photovoltaic cells in ambient atmosphere

Document Type : Article

Authors

School of Physics, Damghan University, Damghan, Iran

Abstract

In this paper, the synthesis processes of perovskite active films of CH3NH3PbI3 (MAPbI3) have been studied for perovskite hybrid solar cells by spin and dip coating in ambient atmosphere, and without glove box to reduce production cost for technological applications. The morphology and structural, electrical and optical properties of perovskite films have been investigated by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopes (FE-SEM), Atomic Force Microscopes (AFM) and Ultraviolet–visible spectroscopy (UV-Vis). A precursor solution of lead Iodide (PbI2) with Dimethylformamide (DMF) solvent by spin coating at two stages (a) R=4500 rpm and (b) R=6000 rpm, and methyl ammonium iodide (CH3NH3I) with isopropanol solvent by dip coating, have been prepared for active perovskite layer (CH3NH3PbI3).

Keywords


Reference:
[1] Kojima, A., Teshima, K., Shirai, Y. et al., "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells" J. Am. Chem. Soc.131, pp. 6050-6051 (2009).
[2] Hao, F., Stoumpos, C. C., Cao, D. H. et al., "Lead-free solid-state organic–inorganic halide perovskite solar cells", Nat. Photon., 8, pp.489–494 (2014). 
[3] Futscher, M. H., Lee, J. M., McGovern, L. et al., "Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements", Mater. Horiz., 6 pp.1497-1503 (2019).
[4] Kim, T. W., Uchida, S., "Role of FIB and TEM in Organo-Halide Perovskite Solar Cell Observations", The Hitachi Scientific Instrument news, 13, pp.1-7(2019). 
[5] Luo, S., and Daoud, W., "Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite"
, Materials, 9(3), pp. 123-135 (2016). 
[6] Zhu, Y., Shu, L. & Fan, Z. "Recent Progress on Semi-transparent Perovskite Solar Cell for Building-integrated Photovoltaics", Chem. Res. Chin. Univ. 36, pp.366–376(2020). 
[7] Saliba, M., Matsui, T., Domanski, K. et al., "Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science". 354, pp.206-209(2016).
[8] Fu, H., "Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: From materials to solar cells", Solar Energy Materials and Solar Cells, 193, pp. 107-132 (2019).
[9] Luo, J. , Xia, J. , Yang, H., et al. "Novel approach toward hole-transporting layer doped by hydrophobic Lewis acid through infiltrated diffusion doping for perovskite solar cells", Nano Energy, 70, p.104509 (2020).
[10] Xiong, C. Xiong, J. Su, et al. "Revelating mechanism of light ideality factor in organic solar cells", Organic Electronics, 78, p.105559 (2020).
[11] Deng X., Cao, Z.,Yuan,Y. et al., "Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells", Coordination Chemistry Reviews, 420, pp. 213408 (2020).
[12] Gebremichael, B., Alemu, G., Tessema, G. , "Conductivity of CH3NH3PbI3 thin film perovskite stored in ambient atmosphere", Physica B: Condensed Matter, 514(1), pp.85-88 (2017).
[13] Liu, Q. , Qing Yang, Yu. et al., "High-performance UV–visible Photodetectors Based on CH3NH3PbI3-xClx/GaN Microwire Array Heterostructures", Journal of Alloys and Compounds, 864, p.158710 (2021).
[14] Correa-Baena, J., Saliba, M., Buonassisi, T. et al. "Promises and challenges of perovskite solar cells", Science, 358 (6364), pp.739-744 (2017).
[15] Hcu, H. Y., Vella, J. H., Myers, J. D., et al., "Triplet Exciton Diffusion in Platinum Polyyne Films", J. Phys. Chem. C. 118, pp. 24282-24289 (2014).
[16] Zhou, G., Chu, W. and Prezhdo O. V., "Structural Deformation Controls Charge Losses in MAPbI3: Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics", ACS Energy Lett., 5(6), pp.1930–1938 (2020).
[17] Luo, S., Yo, P., Cai, G. et al. " The influence of chloride on interdiffusion method for perovskite solar cells", Materials Letters, 169, pp. 236-240 (2016).
[18] Rothmann, M., Li, W., Zhu, Y. et al. "Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3". Nat Commun 8, pp.14547-14554 (2017).
[19] Uzu, H., Ichikawa, H., Hino, M. et al., "High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system”, Appl. Phys. Lett. 106, p.013506 (2015). 
[20] Zhao, D., Yu, Y., Wang, C., et.al. "Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells", Nature Energy, 2, p.17018 (2017).
[21] Wang, D. L., Cui, H. J., Hou, G. J., et al., "Highly efficient light management for perovskite solar cells", Sci. Rep., 6, 18922 (2016). 
[22] Jeon, N. J., Noh, J. H. ,Yang, W. S., et al., "Compositional engineering of perovskite materials for high-performance solar cells", Nature, 517, pp. 476–480 (2014).
[23] Mohd Yusoff, A. R. B., and Nazeeruddin, M. K., "Organohalide Lead Perovskites for Photovoltaic Applications", J. Phys. Chem. Lett.,7(5), pp.851–866 (2016).
[24] Dualeh, A., Tétreault, N., Moehl T., et al., "Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells", Adv. Funct. Mater. 24, pp.3250-3258 (2014).  
[25] Minemotoa, T. and Murata, M., "Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation"
Curr. Appl Phys., 14 pp.1428–1433(2014).
[26] M. Shahbazi, and Wan, H. ,  "Progress in research on the stability of organometal perovskite solar cells", Solar Energy,123, pp 74-87 (2016).
[27] Smith, I.C., Hoke, E. T., Solis-Ibarra, D. et al. "A Layered Hybrid Perovskite Solar‐Cell Absorber with Enhanced Moisture Stability", Chem. Int. Ed. Engl. 53 (42), pp.11232–11235 (2014).
[28] Hwang, B. and Lee, J. S., "Hybrid Organic-Inorganic Perovskite Memory with Long-Term Stability in Air", Sci. Rep., 7, 673 (2017).
[29]  Yin, W. J.,  Yang, J. H.   Kang, J., et al., "Halide perovskite materials for solar cells: a theoretical review", J. Mater. Chem. A, 3, pp.8926-42 (2015). 
[30] Burschka, J., Pellet, N., Moon, SJ. et al. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells", Nature, 499, pp.316-319 (2013).