Prediction of shrinkage ratio of ZA 27 die casting alloy with artificial neural network, computer aided simulation and comparison with experimental studies

Document Type : Article


Faculty of Engineering and Natural Science, Iskenderun Technical University, 31200, _Iskenderun, Hatay, Turkey


In the cast alloys with a long freezing range such as ZA-27, casting defects such as porosity and shrinkage will occur if casting variables are not controlled carefully. In this study, the effect of casting variables on shrinkage and micro-porosity defects in ZA-27 was investigated. The defects of casting were predicted with Artificial Neural Network algorithms. The cooling rate, solidification time, temperature, liquid phase, initial mold temperature, and %shrinkage were obtained from a series of simulation- experimental tests. The heat transfer coefficient of ZA-27 and graphite die was calculated as 2000 W/(m2K). In the samples poured into the mold heated at 350 °C, the minimum feeder shrinkage volume was observed. Locations of the chronic Hotspot and Shrinkage problem was estimated. It was observed that the casting heated to 150 °C had wide-deep shrinkage on the upper and lateral surfaces of the feeder. A good correlation was obtained between the modeling results of the ANN and the experimental results. Optimum ANNs were designed, trained, and tested to predict the shrinkage rate for various initial mold temperatures and physical conditions. Thanks to the sigmoid (sigmoaxon) function training, the most systematic modeling ANN set was revealed with 99% (Vol. 7.65% Shrinkage) prediction.


 1.             David, R., Shrivastava, V., Dasgupta, R., Prasad, B. K., and Singh, I. B., “Corrosion investigation of zinc–aluminum alloy (za-27) matrix reinforced with in situ synthesized titanium carbide particle composites”, J. Mater. Eng. Perform., 28(4), pp. 2356–2364 (2019).
2.             Genel, K., Kurnaz, S. C., and Durman, M., “Modeling of tribological properties of alumina fiber reinforced zinc–aluminum composites using artificial neural network”, Mater. Sci. Eng. A, 363(1), pp. 203–210 (2003).
3.             Pola, A., Tocci, M., and Goodwin, F. E., “Review of microstructures and properties of zinc alloys”, Metals, 10(2), p. 253 (2020).
4.             Pürçek, G., “Improvement of mechanical properties for Zn–Al alloys using equal-channel angular pressing”, J. Mater. Process. Technol., 169(2), pp. 242–248 (2005).
5.             Santos, G. A., de Moura Neto, C., Osório, W. R., and Garcia, A., “Design of mechanical properties of a Zn27Al alloy based on microstructure dendritic array spacing”, Mater. Des., 28(9), pp. 2425–2430 (2007).
6.             Movahedi, N., Murch, G. E., Belova, I. V., and Fiedler, T., “Effect of heat treatment on the compressive behavior of zinc alloy ZA27 syntactic foam”, Materials, 12(5) (2019).
7.             Nilsson, A., Gabrielson, P., and Ståhl, J.-E., “Zinc-alloys as tool materials in short-run sheet-metal forming processes: Experimental analysis of three different zinc-alloys”, J. Mater. Process. Technol., 125–126, pp. 806–813 (2002).
8.             Zhang, Z. M., Wang, J. C., Liu, H. Z., and Guo, X. F., “Effect of annealing on damping capacities of as-cast ZA27 alloy”, Acta Metall. Sin. Engl. Lett., 19(5), pp. 379–384 (2006).
9.             Chen, T. J., Hao, Y., Sun, J., and Li, Y. D., “Effects of processing parameters on tensile properties and hardness of thixoformed ZA27 alloy”, Mater. Sci. Eng. A, 382(1), pp. 90–103 (2004).
10.          Kumruoglu, L. C. and Özer, A., “Investigation of critical liquid fraction factor in nodular iron castings by computer simulation”, J. Mater. Process. Technol., 197(1), pp. 182–188 (2008).
11.          Savaşkan, T. and Aydıner, A., “Effects of silicon content on the mechanical and tribological properties of monotectoid-based zinc–aluminium–silicon alloys”, Wear, 257(3), pp. 377–388 (2004).
12.          Zhao, P., Zhang, J., Dong, Z., Huang, J., Zhou, H., Fu, J., and Turng, L.-S., “Intelligent injection molding on sensing, optimization, and control”,
13.          Yang, L. J., “The effect of solidification time in squeeze casting of aluminium and zinc alloys”, J. Mater. Process. Technol., 192–193, pp. 114–120 (2007).
14.          Zhao, P., Dong, Z., Zhang, J., Zhang, Y., Cao, M., Zhu, Z., Zhou, H., and Fu, J., “Optimization of injection-molding process parameters for weight control: converting optimization problem to classification problem”,
15.          Cao, L., Liao, D., Sun, F., Chen, T., Teng, Z., and Tang, Y., “Prediction of gas entrapment defects during zinc alloy high-pressure die casting based on gas-liquid multiphase flow model”, Int. J. Adv. Manuf. Technol., 94(1), pp. 807–815 (2018).
16.          Shafyei, A., Anijdan, S. H. M., and Bahrami, A., “Prediction of porosity percent in Al–Si casting alloys using ANN”, Mater. Sci. Eng. A, 431(1), pp. 206–210 (2006).
17.          Aravind, S., Ragupathi, P., and Vignesh, G., “Numerical and experimental approach to eliminate defects in al alloy pump- crank case processed through gravity die casting route”, Mater. Today Proc. (2020).
18.          Haykin, S., “Neural networks, a comprehensive foundation”, pp. 157–173 (1999).
19.          Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., and Arshad, H., “State-of-the-art in artificial neural network applications: A survey”, Heliyon, 4(11), p. e00938 (2018).
20.          Moslehi, F., Haeri, A., and Martínez-Álvarez, F., “A novel hybrid GA–PSO framework for mining quantitative association rules”, Soft Comput., 24(6), pp. 4645–4666 (2020).
21.          Mohamed, Z. E., “Using the artificial neural networks for prediction and validating solar radiation”, J. Egypt. Math. Soc., 27(1), p. 47 (2019).
22.          Sharma, S., “Activation Functions in Neural Networks”,
23.          Cavaleri, L., Asteris, P. G., Psyllaki, P. P., Douvika, M. G., Skentou, A. D., and Vaxevanidis, N. M., “Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks”, Appl. Sci., 9(14), p. 2788 (2019).
24.          Guo, Z. and Sha, W., “Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network”, Comput. Mater. Sci., 29(1), pp. 12–28 (2004).
25.          (Tony) Hou, T.-H., Su, C.-H., and Chang, H.-Z., “Using neural networks and immune algorithms to find the optimal parameters for an IC wire bonding process”, Expert Syst. Appl., 34(1), pp. 427–436 (2008).
26.          Ibrahim, D., “An overview of soft computing”, Procedia Comput. Sci., 102, pp. 34–38 (2016).
27.          Azadi Moghaddam, M. and Kolahan, F., “Modeling and optimization of the electrical discharge machining process based on a combined artificial neural network and particle swarm optimization algorithm”, Sci. Iran., 27(3), pp. 1206–1217 (2019).
28.          Altabey, W. A., Noori, M., Alarjani, A., and Zhao, Y., “Tensile creep monitoring of basalt ber-reinforced polymer plates via electrical potential change and arti cial neural network”, Sci. Iran., p. 14 (2020).
29.          Manikandan, S. G. K., Sivakumar, D., and Kamaraj, M., “1 - Physical metallurgy of alloy 718”, In Welding the Inconel 718 Superalloy, S. G. K. Manikandan, D. Sivakumar, and M. Kamaraj, Eds., Elsevier, pp. 1–19 (January 1, 2019).
30.          Hou, W., Zhang, D., Wei, Y., Guo, J., and Zhang, X., “Review on computer aided weld defect detection from radiography Images”, Appl. Sci., 10(5), p. 1878 (2020).
31.          Mohd Hashim, S. A., The Use of ANN to Automate Welding Defect Detection-a Review (2015).
32.          Guler, M. O. and Artir, R., “Modular neural network modeling of compressive strength of high-alumina bricks by using tangent function”, Mater. Des., 28(1), pp. 112–118 (2007).
33.          Yang, H., Jia, B., Zhang, Z., Qu, X., Li, G., Lin, W., Zhu, D., Dai, K., and Zheng, Y., “Alloying design of biodegradable zinc as promising bone implants for load-bearing applications”, Nat. Commun., 11(1), p. 401 (2020).
34.          “MES-Die-Casting-Design-Guide.pdf” (n.d.).
35.          Li, W. and Cui, J., “A new method for quickly locating the hot spots in solidification simulation of complicated castings”, Int. J. Cast Met. Res., 15(4), pp. 319–323 (2003).
36.          Wankhede, D. M., Narkhede, B. E., Mahajan, S. K., and Choudhari, C. M., “Influence of pouring temperature and external chills on mechanical properties of aluminum silicon alloy castings”, Mater. Today Proc., 5(9, Part 3), pp. 17627–17635 (2018).
37.          Yashwant S. Munde, “Thermal analysis of feeder neck using FEM for a metal casting”, Int. J. Emerg. Technol. Adv. Eng., 2(8) (2012).
38.          Khalajzadeh, V. and Beckermann, C., “Simulation of shrinkage porosity formation during alloy solidification”, Metall. Mater. Trans. A, 51(5), pp. 2239–2254 (2020).
39.          Akhter, R. and Islam, R., “Effect of mould preheat temperature on the solidification structures of Zn-27Al Alloy”, 5(2), p. 4 (2016).
40.          Peter, I., Agapie, M., and Varga, B., “Dendritic Segregation of Zn-Al Eutectoid Alloys”, Metals, 8(11), p. 924 (2018).
41.          Li, M., Li, Y., Zhou, H., Li, M., Li, Y., and Zhou, H., “Microstructure and Mechanical Properties of ZA27 Alloy Rheo-Diecasting Process Fabricated by Self-Inoculation Method”, Mater. Res., 23(4) (2020).
42.          Kayikci, R., Colak, M., and Sirin ..., S., “Determination of the critical fraction of solid during the solidification of a PM-cast aluminium alloy”, Mater. Tehnol., 49(5), pp. 797–800 (2015).
43.          Tavakoli, R. and Davami, P., “Automatic optimal feeder design in steel casting process”, Comput. Methods Appl. Mech. Eng., 197(9), pp. 921–932 (2008).
44.          Fuwa, D., Sakuragi, T., Mizubayashi, M., Kobayashi, M., and Katsumi, T., “Prediction of laminations in zinc alloy die-casting by gas-liquid two-phase flow simulation”, Mater. Trans., 60(5), pp. 793–801 (2019).