Application of TiO2/ZnFe2O4/glycine nanocatalyst to the treatment of methyl orange dye from aqueous solution: Impacts of dissolved mineral salts on dye removal efficiency

Document Type : Article


Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran


This study aimed to remove one of the frequently used dyes in textile industries, Methyl Orange, from pollutant water with TiO2/ZnFe2O4/Glycine nanocatalyst under UV irradiation. The TiO2/Glycine/ZnFe2O4 nanocatalyst was synthesized through the sol-gel method and characterized by XRD, XRF, FT-IR, UV-Visible DRS, BET, FE-SEM, and EDX analyses. Process factors, including initial dye concentration (10-30 ppm), nanocatalyst dosage (0.5-1.5 g/L), initial pH solution (3-11), and irradiation time (30-150 min), were investigated by central composite design. The removal efficiency of Methyl Orange was 80% under optimal conditions (dye concentration: 20 ppm, nanocatalyst dosage: 1 g/L, irradiation time: 120 min, and pH=6.5). The effects of mineral salts such as NaHCO3, NaCl, Na2SO4, KCl, MgSO4, and CaCl2 with the concentrations of 50-800 ppm on the dye removal efficiency were examined under the optimal conditions. Low concentrations of NaCl, KCl, and CaCl2 had adverse effects on MO removal efficiency, while the dye removal efficiency raised at their high levels (RNaCl.800=74.52%). An increase in concentrations of MgSO4 and Na2SO4 led to deactivation effects on the dye removal efficiency and reaction rate constant (MgSO4 deactivation: 36%). There was an upward trend in the pollutant removal efficiency and reaction rate constant using NaHCO3 (RNaHCO3.800=82.4% and kNaHCO3.800=20.84 day-1).


1.    Das, T. R., & Sharma, P. K. “Bimetal oxide decorated graphene oxide (Gd2O3/Bi2O3@GO) nanocomposite as an excellent adsorbent in the removal of methyl orange dye,” Materials Science in Semiconductor Processing, vol. 105, pp. 104721, 2020.
2.    Fradj, A. B., Boubakri, A., Hafiane, A., & Hamouda, S. B.  “Removal of azoic dyes from aqueous solutions by chitosan enhanced ultrafiltration,” Results in Chemistry, vol. 2, pp. 100017, 2020.
3.    Bhatti, M. A., Shah, A. A., Almani, K. F., Tahira, A., Chalangar, S. E., dad Chandio, A., Nur, O., Willander, M., & Ibupoto, Z. H. “Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange,” Ceramics International, vol. 45, no. 17, Part B, pp. 23289-23297, 2019.
4.    Zhu, Z., Xiang, M., Li, P., Shan, L., & Zhang, P. “Surfactant-modified three-dimensional layered double hydroxide for the removal of methyl orange and rhodamine B: Extended investigations in binary dye systems,” Journal of Solid State Chemistry, vol. 288, pp. 121448, 2020.
5.    Gautam, P. K., Singh, A., Misra, K., Sahoo, A. K., & Samanta, S. K. “Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment,” Journal of Environmental Management, vol. 231, pp. 734-748, 2019.
6.    Gautam, P. K., Shivapriya, P. M., Banerjee, S., Sahoo, A. K., & Samanta, S. K. “Biogenic fabrication of iron nanoadsorbents from mixed waste biomass for aqueous phase removal of alizarin red S and tartrazine: Kinetics, isotherm, and thermodynamic investigation,” Environmental Progress & Sustainable Energy, vol. 39, no. 2, pp. e13326, 2020.
7.    Upadhyay, G. K., Rajput, J. K., Pathak, T. K., Pal, P. K., & Purohit, L. P. “Tailoring and optimization of hybrid ZnO:TiO2:CdO nanomaterials for advance oxidation process under visible light,” Applied Surface Science, vol. 509, pp. 145326, 2020.
8.    Arshad, R., Bokhari, T. H., Javed, T., Bhatti, I. A., Rasheed, S., Iqbal, M., Nazir, A., Naz, S., Khan, M. I., Khosa, M. K. K., & Zia-ur-Rehman, M. “Degradation product distribution of Reactive Red-147 dye treated by UV/H2O2/TiO2 advanced oxidation process,” Journal of Materials Research and Technology, 2020.
9.    Nguyen, C. H., Tran, M. L., Van Tran, T. T., & Juang, R. S. “Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites,” Separation and Purification Technology, vol. 232, pp. 115962, 2020.
10.    Dutta, V., Sharma, S., Raizada, P., Hosseini-Bandegharaei, A., Kaushal, J., & Singh, P.  “Fabrication of visible light active BiFeO3/CuS/SiO2 Z-scheme photocatalyst for efficient dye degradation,” Materials Letters, vol. 270, pp. 127693, 2020.
11.    Taghvaei, H., Farhadian, M., Davari, N., & Maazi, S. “Preparation, characterization and photocatalytic degradation of methylene blue by Fe3+ doped TiO2 supported on natural zeolite using response surface methodology,” Advances in Environmental Technology, vol. 3, no. 4, pp. 205-216, 2017.
12.    Gautam, P. K., Shivalkar, S., & Samanta, S. K. "Environmentally Benign Synthesis of Nanocatalysts: Recent Advancements and Applications," Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, O. V. Kharissova, L. M. T. Martínez and B. I. Kharisov, eds., pp. 1-19, Cham: Springer International Publishing, 2020.
13.    Davari, N., Farhadian, M., Nazar, A. R. S., & Homayoonfal, M. “Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3based on clinoptilolite: Structural and operational comparison,” Journal of Environmental Chemical Engineering, vol. 5, no. 6, pp. 5707-5720, 2017.
14.    Kaiba, A., Ouerghi, O., Geesi, M. H., Elsanousi, A., Belkacem, A., Dehbi, O., Alharthi, A. I., Alotaibi, M. A., & Riadi, Y. “Characterization and catalytic performance of Ni-Doped TiO2 as a potential heterogeneous nanocatalyst for the preparation of substituted pyridopyrimidines,” Journal of Molecular Structure, vol. 1203, pp. 127376, 2020.
15.    Zou, L., Wang, H., Jiang, X., Yuan, G., & Wang, X. “Enhanced photocatalytic efficiency in degrading organic dyes by coupling CdS nanowires with ZnFe2O4 nanoparticles,” Solar Energy, vol. 195, pp. 271-277, 2020.
16.    Aram, M., Farhadian, M., Nazar, A. R. S., Tangestaninejad, S., Eskandari, P., & Jeon, B. H. “Metronidazole and Cephalexin degradation by using of Urea/TiO2/ZnFe2O4/Clinoptiloite catalyst under visible-light irradiation and ozone injection,” Journal of Molecular Liquids, vol. 304, pp. 112764, 2020.
17.    Ai, J., Hu, L., Zhou, Z., Cheng, L., Liu, W., Su, K., Zhang, R., Chen, Z., & Li, W. “Surfactant-free synthesis of a novel octahedral ZnFe2O4/graphene composite with high adsorption and good photocatalytic activity for efficient treatment of dye wastewater,” Ceramics International, vol. 46, no. 8, Part B, pp. 11786-11798, 2020.
18.    Choi, I. A., Kwak, D. H., Han, S. B., Park, J. Y., Park, H. S., Ma, K. B., Kim, D. H., Won, J. E., & Park, K. W. “Doped porous carbon nanostructures as non-precious metal catalysts prepared by amino acid glycine for oxygen reduction reaction,” Applied Catalysis B: Environmental, vol. 211, pp. 235-244, 2017.
19.    Mozaffari, M., Arani, M. E., & Amighian, J. “Theeffect of cation distribution on magnetization of ZnFe2O4 nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 21, pp. 3240-3244, 2010.
20.    Zhu, X., Zhang, F., Wang, M., Ding, J., Sun, S., Bao, J., & Gao, C. “Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2,” Applied Surface Science, vol. 319, pp. 83-89, 2014.
21.    Nguyen, T. B., Huang, C. P., & Doong, R. A. “Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light,” Science of The Total Environment, vol. 646, pp. 745-756, 2019.
22.    Xu, Q., Feng, J., Li, L., Xiao, Q., & Wang, J. “Hollow ZnFe2O4/TiO2 composites: High-performance and recyclable visible-light photocatalyst,” Journal of Alloys and Compounds, vol. 641, pp. 110-118, 2015.
23.    Meng, X., Zhuang, Y., Tang, H., & Lu, C. “Hierarchical structured ZnFe2O4@SiO2@TiO2 composite for enhanced visible-light photocatalytic activity,” Journal of Alloys and Compounds, vol. 761, pp. 15-23, 2018.
24.    Zangeneh, H., Zinatizadeh, A. A., Zinadini, S., Feyzi, M., Rafiee, E., & Bahnemann, D. W. “A novel L-Histidine (C, N) codoped-TiO2-CdS nanocomposite for efficient visible photo-degradation of recalcitrant compounds from wastewater,” Journal of Hazardous Materials, vol. 369, pp. 384-397, 2019.
25.    Nguyen, T. B., & Doong, R. A. “Fabrication of highly visible-light-responsive ZnFe2O4/TiO2 heterostructures for the enhanced photocatalytic degradation of organic dyes,” RSC Advances, vol. 6, no. 105, pp. 103428-103437, 2016.
26.    Davari, N., Farhadian, M., & Solaimany Nazar, A. R. “Synthesis and characterization of Fe2O3 doped ZnO supported on clinoptilolite for photocatalytic degradation of metronidazole,” Environmental Technology, pp. 1-13, 2019.
27.    Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. “Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation,” Journal of Molecular Liquids, vol. 258, pp. 354-365, 2018.
28.    Nguyen, C. H., Fu, C. C., & Juang, R. S. “Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways,” Journal of Cleaner Production, vol. 202, pp. 413-427, 2018.
29.    Chen, H., Xue, C., Cui, D., Liu, M., Chen, Y., Li, Y., & Zhang, W. “Co3O4–Ag photocatalysts for the efficient degradation of methyl orange,” RSC Advances, vol. 10, no. 26, pp. 15245-15251, 2020.
30.    Mazhari, M. P., Hamadanian, M., Mehipour, M., & Jabbari, V. “Central composite design (CCD) optimized synthesis of Fe3O4@SiO2@AgCl/Ag/Ag2S as a novel magnetic nano-photocatalyst for catalytic degradation of organic pollutants,” Journal of Environmental Chemical Engineering, vol. 6, no. 6, pp. 7284-7293, 2018.
31.    Nguyen, T. D., Phan, N. H., Do, M. H., & Ngo, K. T. “Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange,” Journal of Hazardous Materials, vol. 185, no. 2, pp. 653-661, 2011.
32.    Smith, Y. R., Kar, A., & Subramanian, V.  “Investigation of Physicochemical Parameters That Influence Photocatalytic Degradation of Methyl Orange over TiO2Nanotubes,” Industrial & Engineering Chemistry Research, vol. 48, no. 23, pp. 10268-10276, 2009.
33.    Rioja, N., Zorita, S., & Penas, F. J. “Effect of water matrix on photocatalytic degradation and general kinetic modeling,” Applied Catalysis B: Environmental, vol. 180, pp. 330-335, 2016.
34.    Aguedach, A., Brosillon, S., & Morvan, J. “Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder,” Journal of Hazardous Materials, vol. 150, no. 2, pp. 250-256, 2008.
35.    Chen, P., Zhang, Q., Shen, L., Li, R., Tan, C., Chen, T., Liu, H., Liu, Y., Cai, Z., Liu, G., & Lv, W. “Insights into the synergetic mechanism of a combined vis-RGO/TiO2/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products,” Chemosphere, vol. 216, pp. 341-351, 2019.
36.    Lair, A., Ferronato, C., Chovelon, J. M., & Herrmann, J. M. “Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 193, no. 2, pp. 193-203, 2008.
37.    Farhadian, M., Entezami, N., & Davari, N. “Removal of metronidazole antibiotic pharmaceutical from aqueous solution using TiO2/Fe2O3/GO photocatalyst: Experimental study on the effects of mineral salts,” Advances in Environmental Technology, vol. 5, no. 1, pp. 55-65, 2019.
38.    El Hassani, K., Kalnina, D., Turks, M., Beakou, B. H., & Anouar, A.  “Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst,” Separation and Purification Technology, vol. 210, pp. 764-774, 2019.
39.    Dugandžić, A. M., Tomašević, A. V., Radišić, M. M., Šekuljica, N. Ž., Mijin, D. Ž., & Petrović, S. D. “Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 336, pp. 146-155, 2017.
40.    Zabat, N. “Nickel-Substituted Polyoxometalate Nanomaterial as a Green and Recyclable Catalyst for Dye Decolorization,” Arabian Journal for Science and Engineering, vol. 44, no. 1, pp. 227-236, 2019.
41.    Zhou, J., Zhang, Z., Kong, X., He, F., Zhao, R., Wu, R., Wei, T., Wang, L., & Feng, J. “A novel P-N heterojunction with staggered energy level based on ZnFe2O4 decorating SnS2 nanosheet for efficient photocatalytic degradation,” Applied Surface Science, vol. 510, pp. 145442, 2020.
42.    Lahmar, H., Benamira, M., Douafer, S., Messaadia, L., Boudjerda, A., & Trari, M. “Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ZnO under solar light,” Chemical Physics Letters, vol. 742, pp. 137132, 2020.
43.    Dou, R., Lin, H., Guo, M., Cao, J., Liu, C., & Chen, S. “Fabrication of Ag/RP composite with excellent photocatalytic activity for degrading high concentration of methyl orange solution,” Materials Letters, vol. 268, pp. 127612, 2020.
44.    Ghattavi, S., & Nezamzadeh-Ejhieh, A.  “A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4and scavengers,” Composites Part B: Engineering, vol. 183, pp. 107712, 2020.
45.    Boczar, D., Łęcki, T., & Skompska, M. “Visible-light driven FexOy/TiO2/Au photocatalyst – synthesis, characterization and application for methyl orange photodegradation,” Journal of Electroanalytical Chemistry, vol. 859, pp. 113829, 2020.