References:
1. Arulkarthick, V.J., Rathinaswamy, A., and Srihari, K. "Design of BCD adder with five input majority gate for QCA", Journal of Microprocessors and Microsystems, 75, 103040:1-9 (2020).
2. Cesar, T.F., Vieira, L.F.M., Vieira, M.A.M., et al. "Cellular automata-based byte error correction in QCA", Nano Communication Networks, 23, 100278:1- 13 (2020).
3. Lent, C.S., Tougaw, P.D., Porod, W., et al. "Quantum cellular automata", Nanotechnology, 4(1), pp. 49-57 (1993).
4. Lent, C.S. and Tougaw, P.D. "A device architecture for computing with quantum dots", in Proc. IEEE, 85(4), pp. 541-547 (1997).
5. Lent, C.S., Isaksen, B., and Lieberman, M. "Molecular quantum-dot cellular automata", Journal of American Chemical Society, 125, pp. 1056-1063 (2003).
6. Lu, Y. and Lent, C.S. "Theoretical study of molecular quantum-dot cellular automata", Journal of Computational Electronics, 4(1), pp. 115-118 (2005).
7. Ahmed, S. and Naz, S.F. "Design of cost efficient modular digital QCA circuits using optimized XOR gate", in IEEE Transactions on Circuits and Systems II: Express Briefs (2020). DOI: 10.1109/TCSII.2020.3030180.
8. Kianpour, M. and Sabbaghi-Nadooshan, R. "A novel quantum-dot cellular automata X-bit ˣ 32-bit SRAM", IEEE Trans. Very Large Scale Integration (VLSI) Systems, 24(3), pp. 827-836 (2016).
9. Kianpour, M. and Sabbaghi-Nadooshan, R. "A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata", Journal of Microprocessors and Microsystems, 38(8), pp. 1046-1062 (2014).
10. Kianpour, M. and Sabbaghi-Nadooshan, R. "A novel QCA implementation of MUX-based universal shift register", Journal of Computational Electronics, 13(1), pp. 198-210 (2014).
11. Kianpour, M. and Sabbaghi-Nadooshan, R. "A novel design of 8-bit adder/subtractor by quantum-dot cellular automata", Journal of Computer and System Sciences, 80(7), pp. 1404-1414 (2014).
12. Babaie, S., Sadoghifar, A., and Bahar, A.N. "Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA)", In IEEE Transactions on Circuits and Systems II: Express Briefs, 66(6), pp. 963-967 (2019).
13. Wang, L. and Xie, G. "A novel XOR/XNOR structure for modular design of QCA circuits", In IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), pp. 3327-3331 (2020).
14. Bajec, I.L., Zimic, N., and Mraz, M. "The ternary quantum-dot cell and ternary logic", Nanotechnology, 17(8), pp. 1937-1942 (2006).
15. Pecar, P., Mraz, M., Zimic, N., et al. "Solving the ternary QCA logic gate problem by means of adiabatic switching", Journal of Applied Physics, 47(6), pp. 5000-5006 (2008).
16. Tehrani, M.A., Bahrami, S., and Navi, K. "A novel ternary quantum-dot cell for solving majority voter gate problem", Applied Nanoscience, 4(3), pp. 255- 262 (2013).
17. Arjmand, M.M., Soryani, M., and Navi, K. "Coplanar wire crossing in quantum cellular automata using a ternary cell", IET Circuits, Devices & Systems, 7(5), pp. 263-272 (2013).
18. Shahrom, E. and Hosseini, S.A. "A new low power multiplexer based ternary multiplier using CNTFETs", AEU - International Journal of Electronics and Communications, 93, pp. 191-207 (2018).
19. Daraei, A. and Hosseini, S.A. "Novel energy-efficient and high-noise margin quaternary circuits in nanoelectronics", AEU - International Journal of Electronics and Communications, 105, pp. 145-162 (2019).
20. Mohaghegh, S.M., Sabbaghi-Nadooshan, R., and Mohammadi, M. "Innovative model for ternary QCA gates", IET Circuits, Devices & Systems, 12(2), pp. 189-195 (2018).
21. Mohaghegh, S.M., Sabbaghi-Nadooshan, R., and Mohammadi, M. "Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model", Computers & Electrical Engineering, 71, pp. 43-59 (2018).
22. Mohaghegh, S.M., Sabbaghi-Nadooshan, R., and Mohammadi, M. "Design of a ternary QCA multiplier and multiplexer: a model-based approach", Analog Integr Circ Sig Process, 101, pp. 23-29 (2019).
23. Almatrood, A.F. and Singh, H. "Design of generalized pipeline cellular array in quantum-dot cellular automata", IEEE Computer Architecture Letters, 17(1), pp. 29-32 (2018).
24. Abedi, D. and Jaberipur, G. "Decimal full adders specially designed for quantum-dot cellular automata", IEEE Trans. Circuits and Systems II: Express Briefs, 65(1), pp. 106-110 (2018).
25. Orlov, A.O., Amlani, I., Bernstein, G.H., et al. Realization of a functional cell for quantum-dot cellular automata", Science, 277(5328), pp. 928-930 (1997).
26. Lent, C.S. and Isaksen, B. "Clocked molecular quantum-dot cellular automata", IEEE Transactions on Electron Devices, 50(9), pp. 1890-1896 (2003).
27. Amlani, I., Orlov, A.O., Kummamuru, R.K., et al. "Experimental demonstration of a leadless quantumdot cellular automata cell", Appl. Phys. Lett., 77(5), pp. 738-740 (2000).
28. Das, K., De, D., and De, M. "Realisation of semiconductor ternary quantum dot cellular automata", IET Micro Nano Lett., 8(5), pp. 258-263 (2013).
29. Lu, Y., Liu, M., and Lent, C.S. "Molecular quantumdot cellular automata: From molecular structure to circuit dynamics", Journal of Applied Physics, 102(3), p. 034311 (2007).
30. Blair, E. "Electric-field inputs for molecular quantumdot cellular automata circuits", in IEEE Transactions on Nanotechnology, 18, pp. 453-460 (2019).
31. Alam, M.T., Siddiq, M.J., Bernstein, G.H., et al. "Onchip clocking for nanomagnet logic devices", IEEE Trans. Nanotechnology, 9(3), pp. 348-351 (2010).
32. http://www.qcasim.com.
33. Pain, P., Sadhu, A., Das, K., et al. "Physical proof and simulation of ternary logic gate in ternary quantum dot cellular automata", Computational Advancement in Communication Circuits and Systems, Lecture Notes in Electrical Engineering, 575, pp. 375-385 (2020).
34. Bhoi, B.K., Misra, N.K., Dash, I., et al. "A redundant adder architecture in ternary quantum-dot cellular automata", Smart Intelligent Computing and Applications, 159, pp. 375-384 (2020).
35. Walus, K., Dysart, T.J., Jullien, G.A., et al. "QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata", IEEE Trans. Nanotechnology, 3(1), pp. 26-31 (2004).