Honeycomb shaped fractal antenna with dual notch characteristic for UWB applications

Document Type : Article

Authors

1 - ECE, Amity University Uttar-Pradesh, Noida, 201301, India - ECE, ASET, Amity University Rajasthan, Jaipur, 303007, India

2 ASAS, Amity University Rajasthan, Jaipur, 303007, India

3 ECE, Manipal University Jaipur, 303007, India

Abstract

The paper presents a feasible way to construct the honeycomb structured microstrip antenna for UWB (Ultra Wide-band) applications with dual notch characteristic. The antenna designed based on the concept of initial stage of honeycomb nest construction and Defected ground structure(DGS) with dual notch for Ultra Wide Bandwidth applications. The two notches for WiMAX (3.5GHz center frequency) and WLAN (5.5 GHz center frequency) are introduced by etching two asymmetrical quarter wavelength slots in the ground. The compact antenna of size 12 x 20 mm2 with simple geometry achieves very wide bandwidth of 3.1-13.8 GHz(Covers UWB and higher frequency band) with dual notch characteristic.

Keywords


References:
1. Keshwala, U., Rawat, S., and Ray, K. "Nature inspired dual band sneezewort plant growth pattern shaped antenna", Proceedings of 2017 Asia Pacific Microwave Conf., Kuala Lumpur, Malaysia, pp. 580-583 (2017).10.1109/apmc.2017.8251512.
2. Singh, P., Ray, K., and Rawat, S. "Analysis of sun  flower shaped monopole antenna", Wireless Pers Commun, 104(3), pp. 881-894 (2018).DOI: org/10.1007/s11277-018-6056-z.
3. Singh, P, Ocampo, M., Lugo, J., et al. "Fractal and periodical biological antennas: Hidden topologies in DNA , wasps and retina in the eye", Soft Computing Applications, Springer Singapore, pp. 113-130 (2018).
4. Nakano, H., Tajima, S., Nakayama, K., et al. "Numerical analysis of honeycomb antennas with an electromagnetic coupling feed system", Proc. Inst. Elec. Eng. Microw. Antennas Propagation, 145(1), pp. 99- 103 (1998). DOI: 10 1049/ip-map:19981451.
5. Ulla, H., Tahir, F.A., and Khan, M.U. "A honeycomb shaped planar monopole antenna for broadband millimeter-wave applications", 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, pp. 3094-3097 (2017). DOI: 10-23919/EuCAP-2017-7928856.
6. Desai, A., Upadhyaya, T., Patel, R., et al. "Wideband high gain fractal antenna for wireless applications", Progress In Electromagnetics Research Letters, 74, pp. 125-130 (2018). DOI: 10 2528/PIERL18011504.
7. Bhatoa, R., Saini, S.S., Sharma, S., et al. "Novel high gain honeycomb shaped slotted ground microstrip patch antenna design for broadcasting fixed satellite mobile satellite and downlink frequency applications", 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, pp. 348-352 (2016). DOI: 10.1109/ICGTSPICC.2016.7955326.
8. Rajeshkumar, V. and Raghavan, S. "Bandwidth enhanced compact fractal antenna for UWB applications with 5-6 GHz band rejection", Microw Opt Techn Let., 57(3), pp. 2496-2500 (2015). https://doi org/10 1002/mop 28913.
9. Shahu, B.L., Pal, S., and Chattoraj, N. "Design of super wideband Hexagonal-shaped fractal Antenna with Triangular slot", Microw Opt Techn Let., 57(7), pp. 1659-1662 (2015). https://doi org/10 1002/mop 29184.
10. The Federal Communications Commission (FCC), Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems; First Report and Order FCC 02-48 22 April 2002; The Federal Communications Commission: Washington DC USA (2002).
11. The Federal Communications Commission (FCC), Revision of Part 15 of the Commission's Rules Regarding Ultra Wideband Transmission Systems; First Report and Order FCC 03-33 20 September 2007; The Federal Communications Commission: Washington DC USA (2007).
12. Aissaoui, D., Abdelghani, L.M., Boukli-Hacen, N., et al. "CPW-fed UWB hexagonal shaped antenna with additional fractal elements", Microw Opt Techn Lett., 58(10), pp. 2370-2374 (2016). https://doi-org/101002/mop30053.
13. Kumar, J., Basu, B., and Talukdar, F.A. "Modeling of a PIN diode RF switch for reconfigurable antenna application", Scientia Iranica, 26(3), pp. 1714-1723(2019). DOI: 10.24200/sci.2018.20110.
14. Zolfagharloo Koohi, M. and Neshat, M. "Evaluation of graphene-based terahertz photoconductive antenna", Scientia Iranica, 22(3), pp. 1299-1305 (2015).
15. Ram, G., Mandal, D., Kar, R., et al. "Opposition based gravitational search algorithm for synthesis circular and concentric circular antenna arrays", Scientia Iranica, 22(6), pp. 2457-2471 (2015).
16. Ram, G., Mandal, D., Prasad Ghoshal, S., et al.  Optimization of radiation characteristic of time modulated circular geometry using DEWM", Scientia Iranica, 25(3), pp. 1571-1581 (2018).DOI: 10.24200/sci.2017.4372.
17. Foo, C.C., Chai, G.B., and Seah, L.K. "Mechanical properties of Nomex material and Nomex honeycomb structure", Compos. Struct., 80, pp. 588-594 (2007).DOI: 10.1016/j.compstruct.2006.07.010.
18. Narumi, T., Uemichi, K., Honda, H., et al. "Selforganization at the first stage of honeycomb construction: analysis of an attachment-excavation model", PLoS ONE, 13(10), e0205353 (2018).
19. Jhajharia, T., Tiwari, V., Yadav, D., et al. "Wideband circularly polarized antenna with an asymmetric meandered-shaped monopole and defected ground structure for wireless communication", IET Microw Antennas P., 12(9), pp. 1554-1558 (2018).DOI: 10 1049/iet-map 2018 0092.
20. Keshwala, U., Rawat, S., and Ray, K. "Honeycomb shaped fractal antenna with defected ground structure for UWB applications", International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, pp. 341-345 (2019).
21. Keshwala, U., Rawat, S., Ray, K., et al. "Compact circular monopole antenna with band notch characteristics for UWB applications", 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, pp. 312-315 (2018).DOI:10.1109/SPIN.2018.8474173.
22. Mewara, H.S., Deegwal J.K., and Sharma M.M. "A printed Ultra-wideband monopole antenna with triple band notch characteristics", In: Janyani V., Singh G., Tiwari M., d'Alessandro A. (Eds), Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, 546, Springer, Singapore, pp. 243-251 (2020). https://doi.org/10.1007/978-981-13-6159-3 26.
23. Planck, M., The Theory of Heat Radiation, P Blakiston's Son & Co., Dover. Philadelphia PA (1900).
24. Robitaille, P.M. "On the equation which governs cavity radiation", Progress in Physics, 10(2), pp. 126-127 (2014).
25. Robitaille, P.M. "Blackbody radiation and the loss of universality implications for Planck's formulation and Boltzmann's constant", Progress in Physics, 4, pp. 14- 16 (2009).
26. Robitaille, P.M. "A critical analysis of universality and Kirchhoff's law: A return to Stewart's law of thermal emission", Progress in Physics, 3, pp. 30-33 (2008).
27. Stewart, B. "An account of some experiments on radiant heat involving an extension of Prevost's theory of exchanges", Trans. Royal Soc. Edinburgh, 22(1), pp. 1-20 (1861). DOI: https://doi org/10 1017/S0080456800031288.
Volume 29, Issue 6 - Serial Number 6
Transactions on Computer Science & Engineering and Electrical Engineering (D)
November and December 2022
Pages 3338-3346
  • Receive Date: 12 August 2020
  • Revise Date: 11 November 2020
  • Accept Date: 01 March 2021