References:
1.Eastman, J.A., Choi, U.S.,” Anamalously increased effective thermal conductivites of thylene glycol-based nano fluid containing copper nano particles”, Applied Physics Letters., 78, pp. 718-728 (2001).
2. Vishwas,V., Vadekar , “ILs as heat transfer fluids – An assessment using industrial exchanger geometries”, Applied Thermal Engineering ., 111(25), pp. 1581-1587 (2017).
3. Lamas,A., Brito,I.,et al. “Synthesis and characterization of physical, thermal and thermodynamic properties of ILs based on [C12mim] and [N444H] cations for thermal energy storage”, Journal of Molecular Liquids., 224 , pp. 999–1007 (2016).
4. Valkenburg,M.E., Vaughn,R.L., et al. “Thermochemistry of IL heat-transfer fluids”, Thermochimica Acta.,425 , pp. 181–188 (2005).
5. Saffarian,M., , Moravej,M., “Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid”, Renewable Energy, 146, pp. 2316-2329 (2020).
6. Guo,Y., Liu,G., “Solvent-free ionic silica nanofluids: Smart lubrication materials exhibiting remarkable responsiveness to weak electrical stimuli”, Chemical Engineering Journal .,383, pp. 123-202 (2020)
7. Ribeiro, A.P.C., Lourenço, M.J.V., et al. “Thermal conductivity of ionanofluids, 7th Symp. Thermophysical Properties”, Boulder, pp. 21–26 (2009).
8. Nieto de Castro, C.A.,Lourenco, M.J.V., et al.” Thermal properties of ILs and ionanofluids of imidazolium and pyrrolidinium liquids”, J. Chem. Eng. Data., 55 (2) ,pp. 653–661(2010).
9. Nieto de Castro, C.A., Murshed , S.M.S., et al. “Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids”, Int. J. Therm. Sci., 62,pp. 34–39(2012).
10. Ribeiro, A.P.C.,Vieira, S. I. C., et al. “Thermal Properties of ILs and Ionanofluids”, (2010).
11. Nieto de Castro, C.A., Murshed, S.M.S., “Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids”, International Journal of Thermal Sciences., 62,pp. 34-39(2012).
12. Nieto de Castro, C.A., Murshed, S.M.S., et al.” Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids”, International Journal of Thermal Sciences.,62 ,pp. 34-39(2012).
13. Franca, J. M. P., Vieira, S. I. C., et al. “Thermal Conductivity of [C4mim][(CF3SO2)2N] and [C2mim][EtSO4] and Their IoNanofluids with Carbon Nanotubes: Experiment and Theory”, journal of chemical &engineering data, (2013).
14. Murshed, S.M.S., Nieto de Castro, C.A.,et al. J. Nanofluids 1,pp. 175–179(2012).
15. Wang,B., Wang ,X., et al. “IL-based stable nanofluids containing gold nanoparticles”, Journal of Colloid and Interface Science., 362 ,pp. 5–14(2011).
16. Elise,B. F., Ann, E.V.,et al.” Thermophysical Properties of Nanoparticle-Enhanced ILs (NEILs) Heat-Transfer Fluids”, Energy Fuel, (2013).
17. Titan,C.P., , Morshed, A.K.,” Nanoparticle enhanced ILs(NEILS)as working fluid for the next generation solar collector”, Procedia Engineering 56 , pp. 631 – 636( 2013 ).
18. Franca , J.M.P., Reis , F., Vieira, S.I.C.,” Thermophysical properties of IL dicyanamide (DCA) nanosystems”, J. Chem. Thermodynamics., 79 ,pp. 248–257(2014).
19. Nieto de Castro, C. A., Lourenço, M. J. V., et al. “Thermal Properties of ILs and IoNanofluids of Imidazolinium and Pyrrolinium Liquids”, J. Chem. Eng.Data ., 55 ,pp. 653−661(2010).
20. Liu,J., Wang,F.et al. “Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications”, Renewable Energy., 63 ,pp. 519-523(2014).
21. Titan, C. P., Morshed, M., et al. “Effect of nanoparticle dispersion on thermophysical properties of ionic liquids for its potential application in solar collector”, Procedia Engineering., 90, pp. 643 – 648( 2014 ).
22. Wang,F.,Han,J.,et al. “Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement atvery low loading of graphene”, Nanoscale Research Letters., 7 (2012).
23. Ferreira, A.G.M., Simões, P.N., “Transport and thermal properties of quaternary phosphonium ionic liquids and IoNanofluids”, J. Chem. Thermodynamics., (2013).
24. Titan, C. P., Murshed ,A.K.M.M., et al. “Enhanced thermophysical properties of NEILs as heat transfer fluids for solar thermal application”, Applied Thermal Engineering.,110 ,pp. 1–9 (2017).
25. Zongchang,H.X., Zhao, Z.J.,”Measurment of thermal conductivity ,viscosity and density of ionic liquid[EMIM][DEP]-based nanofluids” ,Chinese journal of chemical engineering., 24,pp. 331-338(2016).
26. Astam,K.P., Dutta,A., et al.” Self-assembled mesoporous -Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water”, Journal of Hazardous Materials ., 201,pp. 170– 177(2012).
27. Chena,X.Y., Zhangb,Z,J., et al. “Controlled hydrothermal synthesis of colloidal boehmite ( -AlOOH)nanorods and nanoflakes and their conversion into -Al2O3 nanocrystals”, Solid State Communications., 145,pp. 368–373(2008).
28. Murshed, S.M.S., Leong, K.C., et al.” Investigations of thermal conductivity and viscosity of nanofluids”, International Journal of Thermal Sciences., 47 (5), pp. 560-568(2008).
29. Alawi, O.A., Sidik, N.A.C., et al.” Thermal conductivity and viscosity models of metallic oxides nanofluids”, Int. J. Heat Mass Transfer., 116,pp. 1314-1325(2018).
30. Selvakumar, R.D., Dhinakaran,S.,” Effective viscosity of nanofluids — A modified Krieger–Dougherty model based on particle size distribution (PSD) analysis”, J. Mol. Liq., 225,pp. 20-27(2017).
31. Yu,W., Choi, S.U.S.,”The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model”, J. Nanopart. Res., 5 (1),pp. 167-171(2003).
32. Arul Raja, R.A., Sunil, J., “Estimation of Thermal Conductivity of Nanofluids Using Theoretical Correlations”, International Journal of Applied Engineering Research.,13, pp. 7932-7936(2018).