Experimental investigation of the effect of Al2O3 nanoparticles with spherical and rod-shaped morphologies on the thermophysical properties of ionic nanofluids

Document Type : Article

Authors

1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemical Engineering, Faculty Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Ionic Liquid(IL)now refers to fluids that are liquid at temperatures above 100°C, they are called "Green"solvents.One of their applications is in heat transfer and solar collectors.Thermophysical properties can be improved by adding nanoparticles to the IL.For this reason,spherical and rod-shaped alumina nanoparticles were added to 1-Hexyl-3-methyl imidazolium hexafluorophosphate IL with different weight percentages. The effect of adding nanoparticles on thermophysical properties of IL such as density,viscosity,thermal conductivity, and heat capacity in 0.05,0.1 and 0.5 %wt of nanoparticles at temperatures of 20, 30, and 50 °C is investigated. Increasing the concentration of nanoparticle set out an increase in density, viscosity, and thermal conductivity and a decrease in the thermal capacity of the ionic nanofluid (INF) compared to the base IL.Also, the viscosity, density, and thermal conductivity in INF with rod-shaped alumina nanoparticles are improved more than spherical alumina nanoparticles. Also the experimental viscosity and thermal conductivity data were fitted with the existing theoretical models. the viscosity of spherical alumina-IL and rod-shape alumina-IL was in unison with particles aggregation effect (Krieger-Dougherty model) and the both INF effective thermal conductivity are prognosticated by interfacial layer approach with sufficient accuracy.Eventually nonlinear equations have also been proposed for changes in the thermophysical properties of viscosity.

Keywords


References:
1.Eastman, J.A., Choi, U.S.,” Anamalously increased effective thermal conductivites of thylene glycol-based nano fluid containing copper nano particles”, Applied Physics Letters., 78, pp. 718-728 (2001).
2.    Vishwas,V., Vadekar , “ILs as heat transfer fluids – An assessment using industrial exchanger geometries”, Applied Thermal Engineering ., 111(25), pp. 1581-1587 (2017).
3.    Lamas,A., Brito,I.,et al. “Synthesis and characterization of physical, thermal and thermodynamic properties of ILs based on [C12mim] and [N444H] cations for thermal energy storage”, Journal of Molecular Liquids., 224 , pp. 999–1007 (2016). 
4.    Valkenburg,M.E., Vaughn,R.L., et al. “Thermochemistry of IL heat-transfer fluids”, Thermochimica Acta.,425 , pp. 181–188 (2005).
5.    Saffarian,M., , Moravej,M., “Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid”, Renewable Energy, 146, pp. 2316-2329 (2020).
     6.  Guo,Y., Liu,G.,  “Solvent-free  ionic  silica  nanofluids:  Smart  lubrication  materials exhibiting remarkable responsiveness to weak electrical stimuli”, Chemical Engineering Journal .,383, pp. 123-202 (2020)
7. Ribeiro, A.P.C., Lourenço, M.J.V., et al. “Thermal conductivity of ionanofluids, 7th Symp. Thermophysical Properties”, Boulder, pp. 21–26 (2009).
8.    Nieto de Castro, C.A.,Lourenco, M.J.V.,  et al.” Thermal properties of ILs and ionanofluids of imidazolium and pyrrolidinium liquids”, J. Chem. Eng. Data., 55 (2) ,pp. 653–661(2010).
9.    Nieto de Castro, C.A., Murshed , S.M.S., et al. “Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids”, Int. J. Therm. Sci., 62,pp. 34–39(2012).
10.    Ribeiro, A.P.C.,Vieira, S. I. C., et al. “Thermal Properties of  ILs and Ionanofluids”, (2010).
11.    Nieto de Castro, C.A., Murshed, S.M.S., “Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids”, International Journal of Thermal Sciences., 62,pp. 34-39(2012).
12.    Nieto de Castro, C.A., Murshed, S.M.S., et al.” Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids”, International Journal of Thermal Sciences.,62 ,pp. 34-39(2012).
13.    Franca, J. M. P., Vieira, S. I. C., et al. “Thermal Conductivity of [C4mim][(CF3SO2)2N] and [C2mim][EtSO4] and Their IoNanofluids with Carbon Nanotubes: Experiment and Theory”, journal of chemical &engineering data, (2013).
14. Murshed, S.M.S., Nieto de Castro, C.A.,et al. J. Nanofluids 1,pp. 175–179(2012).
15.    Wang,B., Wang ,X., et al. “IL-based stable nanofluids containing gold nanoparticles”, Journal of Colloid and Interface Science., 362 ,pp. 5–14(2011).
16.    Elise,B. F., Ann, E.V.,et al.” Thermophysical Properties of Nanoparticle-Enhanced ILs (NEILs) Heat-Transfer Fluids”, Energy Fuel, (2013).
17.    Titan,C.P., , Morshed, A.K.,” Nanoparticle enhanced ILs(NEILS)as working fluid for the next generation solar collector”, Procedia Engineering 56 , pp. 631 – 636( 2013 ).
18.    Franca , J.M.P., Reis , F., Vieira, S.I.C.,” Thermophysical properties of IL dicyanamide (DCA) nanosystems”, J. Chem. Thermodynamics., 79 ,pp. 248–257(2014).
19.    Nieto de Castro, C. A., Lourenço, M. J. V., et al. “Thermal Properties of ILs and IoNanofluids of Imidazolinium and Pyrrolinium Liquids”, J. Chem. Eng.Data ., 55 ,pp. 653−661(2010).
20.    Liu,J., Wang,F.et al. “Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications”, Renewable Energy., 63 ,pp. 519-523(2014).
21.    Titan, C. P., Morshed, M., et al.  “Effect of nanoparticle dispersion on thermophysical properties of ionic liquids for its potential application in solar collector”, Procedia Engineering., 90, pp. 643 – 648( 2014 ).
 
22.    Wang,F.,Han,J.,et al. “Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement atvery low loading of graphene”, Nanoscale Research Letters., 7 (2012).
23.    Ferreira, A.G.M., Simões, P.N., “Transport and thermal properties of quaternary phosphonium ionic liquids and IoNanofluids”, J. Chem. Thermodynamics., (2013).
24.    Titan, C. P., Murshed ,A.K.M.M., et al. “Enhanced thermophysical properties of NEILs as heat transfer fluids for solar thermal application”, Applied Thermal Engineering.,110 ,pp. 1–9 (2017).
25.    Zongchang,H.X., Zhao, Z.J.,”Measurment of thermal conductivity ,viscosity and density of ionic liquid[EMIM][DEP]-based nanofluids” ,Chinese journal of chemical engineering., 24,pp. 331-338(2016).
26.    Astam,K.P., Dutta,A., et al.” Self-assembled mesoporous -Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water”, Journal of Hazardous Materials ., 201,pp. 170– 177(2012).
27.    Chena,X.Y., Zhangb,Z,J., et al. “Controlled hydrothermal synthesis of colloidal boehmite ( -AlOOH)nanorods and nanoflakes and their conversion into -Al2O3 nanocrystals”, Solid State Communications., 145,pp. 368–373(2008).
28. Murshed, S.M.S., Leong, K.C., et al.” Investigations of thermal conductivity and viscosity of nanofluids”, International Journal of Thermal Sciences., 47 (5), pp. 560-568(2008).
29.    Alawi, O.A., Sidik, N.A.C., et al.” Thermal conductivity and viscosity models of metallic oxides nanofluids”, Int. J. Heat Mass Transfer., 116,pp. 1314-1325(2018).
30.    Selvakumar, R.D., Dhinakaran,S.,” Effective viscosity of nanofluids — A modified Krieger–Dougherty model based on particle size distribution (PSD) analysis”, J. Mol. Liq., 225,pp. 20-27(2017).
31.    Yu,W.,  Choi, S.U.S.,”The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model”, J. Nanopart. Res., 5 (1),pp. 167-171(2003).
     32.  Arul  Raja, R.A.,  Sunil, J., “Estimation of Thermal  Conductivity of Nanofluids   Using Theoretical Correlations”, International Journal of Applied Engineering Research.,13, pp. 7932-7936(2018).
Volume 28, Issue 3 - Serial Number 3
Transactions on Chemistry and Chemical Engineering (C)
June 2021
Pages 1452-1463
  • Receive Date: 06 May 2020
  • Revise Date: 11 December 2020
  • Accept Date: 22 February 2021