Document Type : Article

**Authors**

School of Mechanical Engineering, Sharif University of Technology, Tehran, P.O. Box 11155/9567, Iran

**Abstract**

The discrete element method (DEM) is used to establish a rheological model that relates the apparent viscosity of a granular material to shear rate, normal stress, and water saturation. A theoretical model is developed to determine water distribution and water-induced forces between particles for different saturations. The resulting forces are embedded in a 3D shear cell as a numerical rheometer and a wet specimen is sheared between two walls. A power law rheological model is obtained as a function of inertia number and saturation. It was found that up to a critical saturation, the apparent viscosity increases with saturation and is higher than that of the dry specimen. However, when the saturation exceeds a critical value, the viscosity suddenly drops below that of dry condition. To evaluate the model, the collapse of two-dimensional granular material on a horizontal rigid bed is studied using continuum-based numerical simulation which utilizes the proposed rheological model.

**Keywords**

References

1. Iverson, R. “Landslide triggering by rain infiltration”. *Water Resources Research*. **36**, pp. 1897-1910 (2000).

2. Iverson, R., George, D. “Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster”. *Géotechnique*. **66**, pp. 175-187 (2016).

3. Coussot, P. *Rheometry of pastes, suspensions, and granular materials*. Wiley, Hoboken, N.J (2010).

4. Saramito, P., Wachs, A. “Progress in numerical simulation of yield stress fluid flows”. *Rheologica Acta*. **56**, pp. 211-230 (2017).

5. De Blasio, F. *Introduction to the physics of landslides*. Springer (2011).

6. Midi GDR. “On dense granular flows”. *The European Physical Journal E*, **14**, pp. 341-365 (2004).

7. Fall, A., Ovarlez, G., Hautemayou, et al. “Dry granular flows: Rheological measurements of the μ(I)-rheology”. *Journal of Rheology*. **59**, pp. 1065-1080 (2015).

8. Jop, P., Forterre, Y., Pouliquen, O. “A constitutive law for dense granular flows”. *Nature*. **441**, pp. 727-730 (2006).

9. Gesenhues, L., Camata, J., Coutinho, A. “Simulation of a column collapse for dense granular flows”. *American Congress on Computational Methods in Engineering* (2017).

10. Valette, R., Riber, S., Sardo, L., et al. “Sensitivity to the rheology and geometry of granular collapses by using the μ(I) rheology”. *Computers & Fluids.* **191**, pp. 104260 (2019).

11. Gesenhues, L., Camata, J., Côrtes, A., et al. “Finite element simulation of complex dense granular flows using a well-posed regularization of the μ(I)-rheology”. *Computers & Fluids*. **188**, pp. 102-113 (2019).

12. Cundall, P., Strack, O. “Discussion: A discrete numerical model for granular assemblies”. *Géotechnique*. **30**, pp. 331-336 (1980).

13. Bhateja, A., Khakhar, D. “Rheology of dense granular flows in two dimensions: Comparison of fully two-dimensional flows to unidirectional shear flow,” *Physical Review Fluids*. **3**, pp. 062301 (2018).

14. Mandal, S., Khakhar, D. “A study of the rheology and micro-structure of dumbbells in shear geometries,” *Physics of Fluids*. **30**, pp. 013303 (2018).

15. Shi, H., Roy, S., Weinhart, T., et al. “Steady state rheology of homogeneous and inhomogeneous cohesive granular materials”. *Granular Matter*. **22**, pp. 14 (2020).

16. Binaree, TH., Azéma, E., Estrada, N., et al. “Combined effects of contact friction and particle shape on strength properties and microstructure of sheared granular media”. *Physical Review E*. **102**, pp. 022901 (2020).

17. Vo, TT., Nguyen-Thoi, T. “The role of inter-particle friction on rheology and texture of wet granular flows”. *The European Physical Journal E*. **43**, pp. 65 (2020).

18. Scheel, M., Seemann, R., Brinkmann, M., et al. “Morphological clues to wet granular pile stability”. *Nature Materials*. **7**, pp. 189-193 (2008).

19. Willett, C., Adams, M., Johnson, S., et al. “Capillary Bridges between Two Spherical Bodies”. *Langmuir*. **16**, pp. 9396-9405 (2000).

20. Zhao, C., Kruyt, N., Millet, O. “Capillary bridge force between non-perfectly wettable spherical particles: an analytical theory for the pendular regime”. *Powder Technology*. **339**, 827–837 (2018).

21. Kruyt, N., Millet, O. “An analytical theory for the capillary bridge force between spheres”. *Journal of Fluid Mechanics*. **812**, pp. 129–151 (2017).

22. Nguyen, H., Millet, O., Gagneux, G. “On the capillary bridge between spherical particles of unequal size: analytical and experimental approaches”. *Continuum Mechanics and Thermodynamics*. **31**, pp. 225–237 (2019).

23. Zhao, C., Kruyt, N., Millet, O. “Capillary bridges between unequal-sized spherical particles: Rupture distances and capillary forces”. *Powder Technology*. **346**, pp. 462-476 (2019).

24. Schwarze, R., Gladkyy, A., Uhlig, F., et al. “Rheology of weakly wetted granular materials: a comparison of experimental and numerical data”. *Granular Matter*. **15**, pp. 455-465 (2013).

25. Obermayr, M., Vrettos, C., Eberhard, P., et al. “A discrete element model and its experimental validation for the prediction of draft forces in cohesive soil”. *Journal of Terramechanics*. **53**, pp. 93-104 (2014).

26. Dullien, F., El-Sayed, M., Batra, V. “Rate of capillary rise in porous media with nonuniform pores”. *Journal of Colloid and Interface Science*. **60**, pp. 497-506 (1977).

27. Urso, M., Lawrence, C., Adams, M. “Pendular, Funicular, and Capillary Bridges: Results for Two Dimensions*”. Journal of Colloid and Interface Science*. **220**, pp. 42-56 (1999).

28. Seville, J., Wu, C. *Particle technology and engineering*. Elsevier (2016).

29. Kloss, C., Goniva, C., Hager, A., et al. “Models, algorithms and validation for opensource DEM and CFD-DEM”. *Progress in Computational Fluid Dynamics, An International Journal*. **12**, pp. 140 (2012).

30. Shojaaee, Z., Roux, J., Chevoir, F., et al. “Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region”. *Physical Review E*. **86**, pp. 011301 (2012).

31. da Cruz, F., Emam, S., Prochnow, M., et al. “Rheophysics of dense granular materials: Discrete simulation of plane shear flows”. *Physical Review E*. **72**, pp. 021309 (2005).

32. Iverson, R., Reid, M., Logan, M., et al. “Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment”. *Nature Geoscience*. **4**, pp. 116-121 (2010).

33. Nikooei, M., Manzari, M. “Studying effect of entrainment on dynamics of debris flows using numerical simulation”. *Computers & Geosciences*. **134**, pp. 104337 (2020).

34. Hashemi, M., Fatehi, R., Manzari, M. “A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows”. *International Journal of Non-Linear Mechanics*. **47**, pp. 626-638 (2012).

35. Nguyen, C., Bui, H., Fukagawa, R. “Failure Mechanism of True 2D Granular Flows”. *Journal of Chemical Engineering of Japan*. **48**, pp. 395-402 (2015).

Transactions on Mechanical Engineering (B)

September and October 2021Pages 2719-2732