References:
1. Martins, L.M., Fernandes, N.O.G., Varela, M.L.R., et al. "Comparative study of autonomous production control methods using simulation", Simulation Modelling Practice and Theory, 104, 102142 (2020). DOI: 10.1016/j.simpat.2020.102142.
2. Abdulaziz, O., Cheng, J.K., Tahar, R.M., et al. "A hybrid simulation model for green logistics assessment in automotive industry", Procedia Engineering, 100, pp. 960-969 (2015). DOI: 10.1016/j.proeng.2015.01.455.
3. Dumetz, L., Gaudreault, J., Thomas, A., et al. "A simulation framework for the evaluation of production planning and order management strategies in the sawmilling industry", IFAC-PapersOnLine, 48(3), pp. 622-627 (2015). DOI: 10.1016/j.ifacol.2015.06.151.
4. Heidarzadeh, S., Doniavi, A., and Solimanpur, M. "Development of supply chain strategy in the Iranian automotive industry based on system dynamics and game theory", Scientia Iranica, 24(6), pp. 3345-3354 (2017). DOI: 10.24200/sci.2017.4393.
5. Vieira, G.E., Kuck, M., Frazzon, E., et al. "Evaluating the robustness of production schedules using discreteevent simulation", IFAC-PapersOnLine, 50(1), pp. 7953-7958 (2017). DOI: 10.1016/j.ifacol.2017.08.896.
6. Muller, R. (Prof. Dr-Ing), Horauf, L., Speicher, C., et al. "Simulation based online production planning", Procedia Manufacturing, 38, pp. 1473-1480 (2019). DOI: 10.1016/j.promfg.2020.01.140.
7. Zahraee, S.M., Rohani, J.M., and Wong, K.Y. "Application of computer simulation experiment and response surface methodology for productivity improvement in a continuous production line: Case study", Journal of King Saud University- Engineering Sciences, 30(3), pp. 207-217 (2018). DOI: 10.1016/j.jksues.2018.04.003.
8. Caterino, M., Greco, A., D'Ambra, S., et al. "Simulation techniques for production lines performance control", Procedia Manufacturing, 42, pp. 91-96 (2020). DOI: 10.1016/j.promfg.2020.02.027.
9. Pawlewski, P. "Using PFEP for simulation modeling of production system", Procedia Manufacturing, 17, pp. 811-818 (2018). DOI: 10.1016/j.promfg.2018.10.132.
10. Motlagh, M.M., Azimi, P., Amiri, M., et al. "An efficient simulation optimization methodology to solve a multi-objective problem in unreliable unbalanced production lines", Expert Systems with Applications, 138, pp. 112-836 (2019). DOI: 10.1016/j.eswa.2019.112836.
11. Vaisi, B. and Ebrahimi, A. "Utilizing computer simulation and DEAGP to enhance productivity in a manufacturing system", International Journal of Data Envelopment Analysis, 3(5), pp. 857-866 (2015).
12. Galankashi, M.R., Fallahiarezoudar, E., Moazzami, A., et al. "Performance evaluation of a petrol station queuing system: A simulation-based design of experiments study", Advances in Engineering Software, 92, pp. 15- 26 (2016). DOI: 10.1016/j.advengsoft.2015.10.004.
13. Torabi, M. and Mahlooji, H. "An integrated simulation-DEA approach to multi-criteria ranking of scenarios for execution of operations in a construction project", Iranian Journal of Management Studies, 9(4), pp. 801-827 (2016). DOI: 10.22059/ijms.2017.60097.
14. Kaylani, H. and Atieh, A.M. "Simulation approach to enhance production scheduling procedures at a pharmaceutical company with large product mix", Procedia CIRP, 41, pp. 411-416 (2016). DOI:10.1016/j.procir.2015.12.072.
15. Kumar, S.R., Nathan, V.N., Ashique, S.I.M., et al. "Productivity enhancement and cycle time reduction in Toyota production system through jishuken activitycase study", Materials Today: Proceedings, 37(2), pp. 964-966 (2020). DOI: 10.1016/j.matpr.2020.06.181.
16. Gyulai, D., Pfeiffer, A., Kadar, B., et al. "Simulationbased production planning and execution control for reconfigurable assembly cells", Procedia CIRP, 57, pp. 445-450 (2016). DOI: 10.1016/j.procir.2016.11.077.
17. Marlin, B. and Sohn, H. "Using DEA in conjunction with designs of experiments: an approach to assess simulated futures in the Afghan educational system", Journal of Simulation, 10(4), pp. 272-282 (2017). DOI: 10.1057/jos.2015.14.
18. Berenguer, G., Lyer, A.V., et al. "Disentangling the efficiency drivers in country-level global health programs: An empirical study", Journal of Operations Management, 45, pp. 30-43 (2016). DOI: 10.1016/j.jom.2016.05.005.
19. Amini, A. and Alinezhad, A. "Integrating DEA and group AHP for efficiency evaluation and the identification of the most efficient DMU", International Journal of Supply and Operations Management, 4(4), pp. 318-327 (2017). DOI: 10.22034/2017.4.03.
20. Biuki, M., Kazemi, A., and Alinezhad, A. "An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network", Journal of Cleaner Production, 260(10), pp. 1-14 (2020). DOI: 10.1016/j.jclepro.2020.120842.
21. Mirmozaffari, M. and Alinezhad, A. "Window analysis using two-stage DEA in heart hospitals", International Conference on Innovation in Science, Engineering Computer and Technology (2017).
22. Zarbakhshnia, N. and Jamali Jaghdani, T. "Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: a plastic case study", International Journal of Advanced Manufacturing Technology, 97, pp. 2933-2945 (2018). DOI:10.1007/s00170-018-2884-y.
23. Park, S., Ok, C., and Ha, C. "A stochastic simulation-based holistic evaluation approach with DEA for vendor selection", Computers and Operations Research, 100, pp. 368-378 (2018). DOI: 10.1016/j.cor.2017.08.005.
24. Ebrahiminejad, A., Tavana, M., and Sanatos-Arteaga, F.J. "An integrated data envelopment analysis and simulation method for group consensus ranking", Mathematics and Computers in Simulation, 119, pp.1-17 (2016). DOI: 10.1016/j.matcom.2015.08.022.
25. Azadeh, A., Nazari, T., and Charkhand, H. "Optimization of facility layout design problem with safety and environmental factors by stochastic DEA and simulation approach", International Journal of Production Research, 53(11), pp. 3370-3389 (2015). DOI:10.1080/00207543.2014.986294.
26. Kersuliene, V., Zavadskas, E.K., and Turskis, Z. "Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA)", Journal of Business Economics and Management, 11(2), pp. 243-258 (2010). DOI: 10.3846/jbem.2010.12.
27. Farahmand, M. and Desa, M.I. "RED: a new method for performance ranking of large decision making units", Soft Computing, 21(5), pp. 1271-1290 (2017). DOI: 10.1007/s00500-015-1860-9.
28. Aghaie, A. and Heidary, M.H. "Simulation-based optimization of a stochastic supply chain considering supplier disruption: Agent-based modeling and reinforcement learning", Scientia Iranica, 26(6), pp. 3780-3795 (2019). DOI: 10.24200/sci.2018.20789.
29. Pergher, I., Frej, E.A., Roselli, L.R.P., et al. Integrating simulation and FITradeoff method for scheduling rules selection in job-shop production systems", International Journal of Production Economics, 227, 107669 (2020). DOI: 10.1016/j.ijpe.2020.107669.
30. Laurindo, Q.M.G., Peixoto, T.A., and Rangel, J.J.A. "Communication mechanism of the discrete event simulation and the mechanical project software for manufacturing systems", Journal of Computational Design and Engineering, 6(1), pp. 70-80 (2019). DOI: 10.1016/j.jcde.2018.02.005.
31. Piccinini, A., Previdi, F., Cimini, C., et al. "Discrete event simulation for the reconfiguration of a flexible manufacturing plant", IFAC-PapersOnLine, 51(11), pp. 465-470 (2018). DOI: 10.1016/j.ifacol.2018.08.362.
32. Hatami-Marbini, A., Sajadi, S.M., and Malekpour, H. "Optimal control and simulation for production planning of network failure-prone manufacturing systems with perishable goods", Computers and Industrial Engineering, 146, p. 106614 (2020). DOI: 10.1016/j.cie.2020.106614.
33. Montgomery, D.C., Design and Analysis of Experiments, Wiley, 9th Edn. (2017).
34. Garg, H. and Kaur, G. "Extended TOPSIS method for multi-criteria group decision-making problems under cubic intuitionistic fuzzy environment", Scientia Iranica, 27(1), pp. 396-410 (2020). DOI:10.24200/sci.2018.5307.1194.
35. Alinezhad, A., Sarrafha, K., and Amini, A. "Sensitivity analysis of SAW technique: the impact of changing the decision making matrix elements on the final ranking of alternatives", Iranian Journal of Operations Research, 5(1), pp. 82-94 (2014). DOI:10.1016/j.ijor.2014.10.132.
36. Mousavi-Nasab, S.H. and Sotoudeh-Anvai, A. "A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems", Materials & Design, 121, pp. 237-253 (2017). DOI: 10.1016/j.matdes.2017.02.041.
37. Alinezhad, A. and Khalili, J., New Methods and Applications in Multiple Attribute Decision Making (MADM), International Series in Operations Research & Management Science, Springer (2017).
38. Alinezhad, A., Makui, A., and Mavi, R.K.M. "An inverse DEA model for inputs/outputs estimation with respect to decision maker's preferences: The case of Refah bank of IRAN", Mathematical Sciences, 1(1,2), pp. 61-70 (2007).
39. Omrani, H., Keshavarz, M., and Ghaderi, S.F. "Evaluation of supply chain of a shipping company in Iran by a fuzzy relational network data envelopment analysis model", Scientia Iranica, 25(2), pp. 868-890 (2018). DOI: 10.24200/sci.2017.4415.