Dispersion curves for media with lateral-variation at different angles

Document Type : Article

Authors

Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran

Abstract

In recent years, the studies have been focused on using the surface wave methods in determining the soil specifications. The surface layer of the soil with lateral variation was modeled at different angles in finite element software. The shot was applied on two sides of the geophone array and the seismic wave data were recorded by geophones. Using the windowing methods of different lengths and moving along the array, the various geophone data were placed in different windows. Next, for each windowing, the frequency-wavenumber spectrum was obtained using the double Fourier transform and then, the dispersion curve was plotted. In this regard, the variations in the resolution of frequency-wavenumber spectrum and dispersion curve were investigated for different window lengths. The results show that for the media with lateral variation at different angles, the dispersion curves could be obtained along the array and the location of the start and end of lateral variation along with the corresponding phase velocity range could be achieved with an acceptable accuracy, and the estimated phase velocity could be used as initial velocities in the inversion and specification of soil surface layers.

Keywords


References
1.            Strobbia, C., Boaga, J., Cassiani, G., et al. "Integrated seismic characterization for deep engineering targets: active and passive surface waves, reflection and refraction near-surface modelling from a single acquisition", International Conference on Engineering Geophysics, Al Ain, United Arab Emirates,  (2017).
2.            J. Boaga, M. Hashemi Jokar, L. Petronio, et al. "Surface Waves Analysis To Detect Buried Lateral Discontinuities: a Case Study in the Trieste Port Area", Gruppo Nazionale di Geofisica della Terra Solida (GNGTS), 36° convegno nazionale (National Group of Solid Earth Geophysics (GNGTS), 36th national conference), Trieste, Italy,  (2017).
3.            Hashemi Jokar, M. and Mirasi, S. "Using adaptive neuro-fuzzy inference system for modeling unsaturated soils shear strength", Soft Computing-A Fusion of Foundations, Methodologies and Applications,  22 (13),  pp. 4493-4510 (2018).
4.            Hashemi Jokar, M., Khosravi, A., Heidaripanah, A., et al. "Unsaturated soils permeability estimation by adaptive neuro-fuzzy inference system", Soft Computing,  (2018).
5.            Rahnema, H., Hashemi Jokar, M. and Khabbaz, H. "Predicting the Effective Stress Parameter of Unsaturated Soils Using Adaptive Neuro-Fuzzy Inference System", Scientia Iranica,  (2018).
6.            Socco, L. and Strobbia, C. "Surface-wave method for near-surface characterization: A tutorial", Near Surface Geophysics,  2 (4),  pp. 165-185 (2004).
7.            Strobbia, C. "Surface wave methods: acquisition, processing and inversion". Torino: Politecnico di Torino, Turin, Italy (2003).
8.            Hashemi Jokar, M., Rahnema, H., Boaga, J., et al. "Application of Surface Waves for Detecting Lateral Variations: Buried Inclined Plane", Near Surface Geophysics,  pp. 1-45 (2019).
9.            Tian, G., Steeples, D.W., Xia, J., et al. "Useful resorting in surface-wave method with the autojuggie", Geophysics,  68 (6),  pp. 1906-1908 (2003).
10.          Bohlen, T., Kugler, S., Klein, G., et al. "1.5 D inversion of lateral variation of Scholte-wave dispersion", Geophysics,  69 (2),  pp. 330-344 (2004).
11.          Hayashi, K. and Suzuki, H. "CMP cross-correlation analysis of multi-channel surface-wave data", Exploration Geophysics,  35 (1),  pp. 7-13 (2004).
12.          Luo, Y., Xia, J., Liu, J., et al. "Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves", Journal of Applied Geophysics,  64 (3-4),  pp. 115-124 (2008).
13.          Socco, L.V., Boiero, D., Foti, S., et al. "Laterally constrained inversion of ground roll from seismic reflection records", Geophysics,  74 (6),  pp. G35-G45 (2009).
14.          Vignoli, G. and Cassiani, G. "Identification of lateral discontinuities via multi‐offset phase analysis of surface wave data", Geophysical Prospecting,  58 (3),  pp. 389-413 (2010).
15.          Othmani, C., Dahmen, S., Njeh, A., et al. "Investigation of guided waves propagation in orthotropic viscoelastic carbon–epoxy plate by Legendre polynomial method", Mechanics Research Communications,  74,  pp. 27-33 (2016).
16.          Othmani, C., Takali, F. and Njeh, A. "Theoretical study on the dispersion curves of Lamb waves in piezoelectric-semiconductor sandwich plates GaAs-FGPM-AlAs: Legendre polynomial series expansion", Superlattices and Microstructures,  106,  pp. 86-101 (2017).
17.          Othmani, C., Njeh, A. and Ghozlen, M.H.B. "Influences of anisotropic fiber-reinforced composite media properties on fundamental guided wave mode behavior: A Legendre polynomial approach", Aerospace Science and Technology,  78,  pp. 377-386 (2018).
18.          Hashemi Jokar, M., Boaga, J., Petronio, L., et al. "Detection of lateral discontinuities via surface waves analysis: a case study at a derelict industrial site", Journal of Applied Geophysics,  pp. 65-74 (2019).
19.          Lin, S. "Advancements in active surface wave methods: modeling, testing, and inversion",  (2014).
20.          Lin, S. and Ashlock, J.C. "Surface-wave testing of soil sites using multichannel simulation with one-receiver", Soil Dynamics and Earthquake Engineering,  87,  pp. 82-92 (2016).
21.          Castaings, M., Bacon, C., Hosten, B., et al. "Finite element predictions for the dynamic response of thermo-viscoelastic material structures", The Journal of the Acoustical Society of America,  115 (3),  pp. 1125-1133 (2004).
22.          Hesse, D. and Cawley, P. "Surface wave modes in rails", The Journal of the Acoustical Society of America,  120 (2),  pp. 733-740 (2006).
23.          Zhu, K. and Fang, D. "Calculation of dispersion curves for arbitrary waveguides using finite element method", International Journal of Applied Mechanics,  6 (05),  pp. 1450059 (2014).
24.          ABAQUS v6.14, S. "Abaqus Analysis User’s Guide", Dassault Systèmes Simulia Corp., Proidence, RI, USA,  www.simulia.com,  (2014).
25.          Drozdz, M.B. "Efficient finite element modelling of ultrasound waves in elastic media". Imperial College London (2008).
26.          Helwany, S. "Applied soil mechanics with ABAQUS applications": John Wiley & Sons (2007).
27.          Marburg, S., Discretization requirements: How many elements per wavelength are necessary?, in Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods. 309-332. pp. 309-332 (2008).
28.          Olivier, G., Brenguier, F., Campillo, M., et al. "Body-wave reconstruction from ambient seismic noise correlations in an underground mine",  80 (3),  pp. KS11-KS25 (2015).