References
[1] Stokes, V.K., “Theories of Fluids with Microstructure”, Springer, New York (1984).
[2] Farooq, M., Rahim, M.T., Islam, S.. et al. “Steady Poiseuille flow and heat transfer of couple stress fluids between two parallel inclined plates with variable viscosity”, J Assoc Arab Univ Basic Appl Sci, 14, pp. 9-18(2013).
[3] Eegunjobi, A.S., Makinde, O.D., “Irreversibility analysis of hydromagnetic flow of couple stress fluid with radiative heat in a channel filled with a porous medium”, Results Phy., 7, pp. 459-469 (2017).
[4] Devakar, M., Sreenivasu, D., Shankar, B., “Analytical solutions of couple stress fluid flows with slip boundary conditions”, Alex Eng J, 53, pp. 723–730(2014).
[5] Hayat, T., Zahir, H., Alsaedi, A., et al. “Peristaltic flow of rotating couple stress fluid in a non-uniform channel”, Results Phys, 7, pp. 2865–2873(2017).
[6] Ellahi, R., Zeeshan, A., Hussain, F. et al. “Two-Phase Couette Flow of Couple Stress Fluid with Temperature Dependent Viscosity Thermally Affected by Magnetized Moving Surface”, Symmetry, 11, pp. 647-660 (2019).
[7] Adesanya, S. O., Makhalemele, C.R., Rundora, L. “Natural convection flow of heat generating hydro magnetic couple stress fluid with time periodic Boundary conditions”, Alex Eng J, 57, pp. 1977–1989(2018).
[8] Adesanya, S. O., Souayeh, B., Gorji, M. R. et al. “Heat irreversibiility analysis for a couple stress fluid flow in an inclined channel with isothermal boundaries”, J Taiwan Inst Chem E, 101, pp. 251–258(2019).
[9] Adesanya, S. O., Egere, A. C., Lebelo, R. S. “Entropy generation analysis for a thin couple stress film flow over an inclined surface with Newtonian cooling”, Physica A, 528, pp. 121260 (2019).
[10] Ashmawy, E. A. “Drag on a slip spherical moving in a couple stress fluid”, Alex Eng J, 55, pp. 1159-1164(2016).
[11] Ashmawy, E. A. “Effects of surface roughness on a couple stress fluid flow through corrugated tube”,
Eur J Mech B Fluids,
76, pp. 365-374(2019).
[12] Adesanya, S. O., Egere, A. C., Lebelo R.S. “Entropy generation analysis for a thin couple stress film flow over an inclined surface with Newtonian cooling”, Physica A, 528, pp. 121260(2019).
[13] Hassan, A. R. “The entropy generation analysis of a reactive hydromagnetic couple stress fluid flow through a saturated porous channel”,
Appl Math Comput,
369, pp. 124843(2020).
[14] Zeeshan, A., Hussain, F., Ellahi, R., et al. “A study of gravitational and magnetic effects on coupled stress bi-phase liquid suspended with crystal and Hafnium particles down in steep channel”, J Mol Liq, 286, pp. 110898-11908(2019).
[15] Ellahi, R. “The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions”, Appl Math Model, 37, pp. 1451-1467(2013).
[16] Jabeen, S., Hayat, T., Alsaedi, A., et al. “Consequences of activation energy and chemical reaction in radiative ow of tangent hyperbolic nanoliquid”, Sci Iran, 26, pp. 3928-3937(2019).
[17] Bayat, R., Rahimi, A. B. “Numerical solution to N-S equations in the case of unsteady axisymmetric stagnation-point flow on a vertical circular cylinder with mixed convection heat transfer”, Sci Iran, 25, pp. 2130-2143(2018).
[20] Nazeer, M., Ahmad, F., Saleem, A., et al. “Effects of Constant and Space-Dependent Viscosity on Eyring–Powell Fluid in a Pipe: Comparison of the Perturbation and Explicit Finite Difference Methods”, Z. Naturforsch. 74, pp. 961–969 (2019).
[21] Ahmad, F., Nazeer, M., Saleem, A., et al. “Heat and Mass Transfer of Temperature-Dependent Viscosity Models in a Pipe: Effects of Thermal Radiation and Heat Generation” Z. Naturforsch. 75, pp. 225–239(2020).
[22] Nazeer, M., Ali, N., Ahmad, F., et al. “Numerical and perturbation solutions of third-grade fluid in a porous channel: Boundary and thermal slip effects”, Pramana–J. Phys.94, pp. 44 (2020).
[23] Nazeer, M., Ali, N., Ahmad, F., et al.” Effects of radiative heat flux and joule heating on electro-osmotically flow of non-Newtonian fluid: Analytical approach”, International Communications in Heat and Mass Transfer, 117, pp. 104744 (2020).
[24] Nazeer, M., Ahmad, F., Saeed, M., et al.” Numerical solution for flow of a Eyring–Powell fluid in a pipe with prescribed surface temperature”, J. Braz. Soc. Mech. Sci. Eng., 41, pp. 518 (2019).
[25] Ahmad, F., Tohidi, E., Carrasco, J.A. “A parameterized multi-step Newton method for solving systems of nonlinear equations”, Numer Algorithms, 71, pp. 631–653(2016).
[26] Ali, N., Nazeer, M., Javed, T., et al. “Buoyancy driven cavity flow of a micropolar fluid with variably heated bottom wall”, Heat Trans Res, 49, pp. 457–481(2018).
[27] Nazeer, M., Ali, N., Javed, T. “Effects of moving wall on the flow of micropolar fluid inside a right angle triangular cavity”, Int J Numer Methods Heat Fluid Flow, 28, pp. 2404–2422(2018).
[28] Ali, N., Nazeer, M., Javed, T., et al. “A numerical study of micropolar flow inside a lid-driven triangular enclosure”, Meccanica, 53, pp. 3279–3299(2018).
[29] Nazeer, M., Ali, N., Javed, T. “Natural convection flow of micropolar fluid inside a porous square conduit: effects of magnetic field, heat generation/absorption, and thermal radiation”, J Porous Med, 21, 953–975(2018).
[30] Nazeer, M., Ali, N., Javed, T., et al., “Natural convection through spherical particles of a micropolar fluid enclosed in a trapezoidal porous container”, Eur Phys J Plus, 133, pp. 423(2018).
[31]
Hayat, T.,
Khan, M. I.,
Farooq, M., et al. “Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface”, I. Int J Heat Mass Transf,
99, pp. 702-710 (2016).
[32]
Khan, M. I.,
Hayat, T., Qayyum, S., et al.” Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection”, Phys Lett A,
382, pp. 2017-2026 (2018).