References:
[1] Bargmann, S. and Steinmann, P. “On the propagation of second sound in linear and non-linear media, results from Green-Naghdi theory”, Phys. Lett. A, 372, pp. 4418-4424 (2008).
[2] Christov, C.I. “On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction”, Mech. Research Commun., 36, pp. 481-486 (2009).
[3] Khan, W.A., Khan, M. and Alshomrani, A.S. “Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: Applications of non-Fourier’s heat and non-Fick’s mass flux models”, J. Mol. Liq., 223, pp. 1039)-1047 (2016).
[4] Liu, L., Zheng, L., Liu, F. and Zhang, X. “An improved heat conduction model with Riesz fractional Cattaneo-Christov flux”, Int. J. Heat Mass Transf., 103, pp. 1191-1197 (2016).
[5] Upadhay, M.S., Mahesha, and Raju, C.S.K. “Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions”, Inform. Med. Unlock., 9, pp. 76-85 (2017).
[6] Farooq, M., Ahmad, S., Javed, M. and Anjum, A. “Analysis of Cattaneo-Christov heat and mass fluxes in the squeezed flow embedded in porous medium with variable mass diffusivity”, Results Phys., 7, pp. 3788-3796 (2017).
[7] Shehzad, S.A., Hayat, T., Alsaedi, A. and Meraj, M.A. “Cattaneo-Christov heat and mass flux model for 3D hydromagnetic flow of chemically reactive Maxwell Liquid”, Appl. Math. Mech., 38, pp. 1347-1356 (2018).
[8] Rauf, A., Abbas, Z., Shehzad, S.A., Alsaedi, A. and Hayat, T. “Numerical simulation of chemically reactive Powell-Eyring liquid flow with double diffusive Cattaneo-Christov heat and mass flux theories”, Appl. Math. Mech., 39, pp. 467-476 (2018).
[9] Aqsa, Malik, M.Y., Imtiaz, A. and Awais, M. “Rheology of Burgers' model with Cattaneo-Christov heat flux in the presence of heat source/sink and magnetic field”, Sci. Iran., 26, pp. 323-330 (2019).
[10] Khan, S.U., Shehzad, S.A., Ali, N. and Bashir, M.N. “Analysis of second-grade fluid flow in porous channel with Cattaneo-Christov and generalized Fick’s theories”, Sci. Iran., Articles in Press (2019).
[11] S. S. Chawla, P. K. Srivastava, A. S. Gupta, Rotationally symmetric flow over a rotating disk, International Journal of Non-Linear Mechanics, 44, (2009) pp. 717-726
[12] Mahmood, K., Sajid, M., Ali, N. and Javed, T. “Heat transfer analysis in the time-dependent slip flow over a lubricated rotating disc”, Eng. Sci. Tech., an Int. J., 19, pp. 1949-1957 (2016).
[13] Yin, C., Zheng, L., Zhang, C. and Zhang, X. “Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction”, Prop. Power Research, 6, pp. 25-30 (2017).
[14] Mustafa, M. “MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model”, Int. J. Heat Mass Transf., 108, pp. 1910-1916 (2017).
[15] Turkyilmazoglu, M. “Fluid flow and heat transfer over a rotating and vertically moving disk”, Phys. Fluids, 30, pp. 063605 (2018).
[16] Lok, Y.Y., Merkin, J.H. and Pop, I. “Axisymmetric rotational stagnation-point flow impinging on a permeable stretching/shrinking rotating disk”, Euro. J. Mech.–B/Fluids, 72, pp. 275-292 (2018).
[17] Hayat, T., Khan, M.I., Qayyum, S., Khan, M.I. and Alsaedi, A. “Entropy generation for flow of Sisko fluid due to rotating disk”, J. Mol. Liq., 264, pp. 375-385 (2018).
[18] Gholinia, M., Hosseinzadeh, K., Mehrzadi, H., Ganji, D.D. and Ranjbar, A.A. “Investigation of MHD Eyring-Powell fluid flow over a rotating disk under effect of homogeneous-heterogeneous reactions”, Case Stud. Therm. Eng., 13, pp. 100356 (2018).
[19] Liu, Q. and He, Y. “Lattice Boltzmann simulations of convection heat transfer in porous media”, Phys. A: Stat. Mech. Appl., 465, pp. 742-753 (2017).
[20] Jourabian, M., Darzi, A.A.R., Toghraie, D. and Akbari, O.A. “Melting process in porous media around two hot cylinders: Numerical study using the lattice Boltzmann method”, Phys. A: Stat. Mech. Appl., 509, pp. 316-335 (2018).
[21] Kefayati, G.H.R. “Lattice Boltzmann method for natural convection of a Bingham fluid in a porous cavity”, Phys. A: Stat. Mech. Appl., 521, pp. 146-172 (2019).
[22] Jahanbakshi, S., Pishvaie, M.R. and Boozarjomehry, R.B. “Characterization of three-phase flow in porous media using the ensemble Kalman filter”, Sci. Iran., 24, pp. 1281-1301 (2017).
[23] Ghaffarpasand, O. and Fazeli, D. “Numerical Analysis of MHD mixed convection flow in a parallelogramic porous enclosure filled with nano fluid and in presence of magnetic field induction”, Sci. Iran., 25, pp. 1789-1807 (2018).
[24] Nuori-Borujerdi, A. “A new approach to thermo-Fluid behavior through porous layer of heat pipes”, Sci. Iran., 25, pp. 1236-1242 (2018).
[25] Sheikholeslami, M., Ganji, D.D., Li, Z. and Hosseinnejad, R. “Numerical simulation of thermal radiative heat transfer effects on Fe3O4-Ethylene glycol nanofluid EHD flow in a porous enclosure, Sci. Iran., (2018), doi:10.24200/SCI.2018.5567.1348.
[26] Darcy, H.R.P.G. “Les Fontaines Publiques de la volle de Dijon”, Vector Dalmont. Paris, (1856).
[27] Attia, H.A. “Asymptotic solution for rotating disk flow in porous medium”, Mech. Mech. Eng., 14, pp. 119-136 (2010).
[28] Khan, S.U., Ali, N. and Abbas, Z. “Hydromagnetic flow and heat transfer over a porous oscillating stretching surface in a viscoelastic fluid with porous medium”, Plos One, 10, pp. 0144299 (2015).
[29] Ali, N., Khan, S.U., Sajid, M. and Abbas, Z. “MHD flow and heat transfer of couple stress fluid over an oscillatory stretching sheet with heat source/sink in porous medium”, Alex. Eng. J., 55, 915-924 (2016).
[30] Ali, N., Khan, S.U., Sajid, M. and Abbas, Z. “Slip effects in the hydromagnetic flow of a viscoelastic fluid through porous medium over a porous oscillatory stretching sheet”, J. Porous Med., 20, pp. 249-262 (2017).
[31] Hasnain, J. and Abbas, Z. “Hydromagnetic convection flow in two immiscible fluids through a porous medium in an inclined annulus”, J. Porous Med., 20, pp. 977-987 (2017).
[32] Sheikholeslami, M. and Shehzad, S.A. “CVFEM simulation for nanofluid migration in a porous medium using Darcy model”, Int. J. Heat Mass Transf., 122, pp. 1264-1271 (2018).
[33] Sheikholeslami, M., Kataria, H.R. and Mittal, A.S. “Effect of thermal diffusion and heat-generation on MHD nanofluid flow past an oscillating vertical plate through porous medium”, J. Mol. Liq., 257, pp. 12-25 (2018).
[34] Rauf, A., Abbas, Z. and Shehzad, S.A. “Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium”, Appl. Math. Mech., 40, pp. 837-850 (2019).
[35] Munawar, S., Ali, A., Saleem, N. and Naqeeb, A. “Swirling flow over an oscillatory stretchable disk”, J. Mech., 30, pp. 339-347 (2014).
[36] Rauf, A., Abbas, Z. and Shehzad, S.A. “Chemically hydromagnetic flow over a stretchable oscillatory rotating disk with thermal radiation and heat source/sink: A numerical study”, Heat Transf. Research, 50, 1495-1512 (2019).
[37] Rauf, A., Abbas, Z. and Shehzad, S.A. “Interactions of active and passive control of nanoparticles on radiative magnetohydrodynamics flow of nanofluid over oscillatory rotating disk in porous medium”, J. Nanofluids, 8, pp. 1385-1396 (2019).
[38] W. E. Milne, Numerical solutions of differential equations, John Willey and Sons Inc., New York, (1953).
[39] Hachbusch, W. “Iterative solution of large sparse systems of equations”, Springer International Publishing Switzerland, (2016).