References
[1] Wang, Y., Li, J., and Zhao, D. "Mechanical properties of fiber glass and kevlar woven fabric reinforced composites",
Compos Eng, 5(9), pp. 1159–1175 (1995).
DOI: 10.1016/0961-9526(95)00100-2.
[2] Matykiewicz, D. "Hybrid epoxy composites with both powder and fiber filler: A review of mechanical and thermomechanical properties", Materials, 13, pp. 1–22 (2020). DOI:10.3390/MA13081802.
[3] Valenca, S. L., Griza, S., Oliveira, V. G. de, Sussuchi, E. M., and Cunha, F. G. C. de, "Evaluation of the mechanical behaviour of epoxy composites reinforced with kevlar plain fabric and glass/kevlar hybrid fabric", Compos Part B, 70, pp. 1–8 (2015). DOI: 10.1016/j.compositesb.2014.09.040.
[4] Jarukumjorn, K., and Suppakarn, N. "Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites", Compos Part B, 40, pp. 623–627 (2009). DOI: 10.1016/j.compositesb.2009.04.007.
[5] Reis, P. N. B., Ferreira, J. A. M., Antunes, F. V., and Costa, J. D. M. "Flexural behaviour of hybrid laminated composites", Compos Part A Appl Sci Manuf, 38, pp. 1612–1620 (2007). DOI:10.1016/j.compositesa.2006.11.010.
[6] Dorigato, A., and Pegoretti, A. "Flexural and impact behaviour of carbon/basalt fibers hybrid laminates", J Compos Mater, 48, pp. 1121–30 (2014). DOI:10.1177/0021998313482158.
[7] Ary, Subagia, I. D. G., and Kim, Y. "A study on flexural properties of carbon-basalt/epoxy hybrid composites", J Mech Sci Technol, 27(4), pp. 987–992 (2013). DOI:10.1007/s12206-013-0209-5.
[8] Pandya, K. S., Veerraju, C., and Naik, N. K. "Hybrid composites made of carbon and glass woven fabrics under quasi-static loading",
Mater Des, 32(7), pp. 4094–4099 (2011).
DOI: 10.1016/j.matdes.2011.03.003.
[9] Subagia, I. D. G. A., Kim, Y., Tijing, L. D., Kim, C. S., Shon, H. K. "Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers",
Compos:
Part B,
58, pp. 251–258 (2014).
DOI: 10.1016/j.compositesb.2013.10.027.
[10] Wang, Q., Wu, W., Gong, Z., and Li, W. "Flexural progressive failure of carbon/glass interlayer and intralayer hybrid composites", Materials, 11(4), pp. 1–18 (2018). DOI:10.3390/ma11040619.
[11] Fischer, S., and Marom, G. "The flexural behaviour of aramid fibre hybrid composite materials",
Compos Sci Technol,
28(4), pp. 291–314 (1987).
DOI: 10.1016/0266-3538(87)90027-3.
[12] Dong, C., Ranaweera-Jayawardena, H. A., and Davies, I. J. "Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres", Compos Part B, 43(2), pp. 573–581 (2012). DOI:10.1016/j.compositesb.2011.09.001.
[13] Dong, C., and Davies, I. J. "Flexural properties of E-glass and TR50S carbon fiber reinforced epoxy hybrid composites", J Mater Eng Perform, 22, pp. 41-49 (2013). DOI: 10.1007/s11665-012-0247-7.
[14] Dong, C., and Davies, I. J. "Flexural properties of glass and carbon fiber reinforced epoxy hybrid composites", J Mater Des Appl, 227(4), pp. 308–317 (2012). DOI:10.1177/1464420712459396.
[15] Dong, C., Duong, J., and Davies, I. J. "Flexural properties of S-2 Glass and TR30S carbon fiber-reinforced epoxy hybrid composites", Polym Compos, 37(1), pp. 915–924 (2012). doi:10.1002/pc.22206.
[16] Naidu, P. P, Raghavendra, G., Ojha, S., and Paplal, B. "Effect of g-C3N4 nanofiller as filler on mechanical properties of multidirectional glass fiber epoxy hybrid composites", J Appl Polym Sci, 137, pp. 1-9 (2020). DOI:10.1002/app.48413.
[17] Doddi, P. R. V., Chanamala, R., and Dora, S. P. "Effect of fiber orientation on dynamic mechanical properties of PALF hybridized with basalt reinforced epoxy composites", Mater. Res. Express, 7, 015329 (2020). DOI:10.1088/2053-1591/ab6771.
[18] James, D. J. D., Manoharan, S., Saikrishnan, G., and Arjun, S. "Influence of Bagasse/Sisal fibre stacking sequence on the mechanical characteristics of hybrid-epoxy composites", J Nat Fibers, 17, pp. 1497–1507 (2019). DOI:10.1080/15440478.2019.1581119.
[19] Arani, A. G., Mosayyebi, M., Kolahdouzan, F., Kolahchi, R., and Jamali, M. "Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers". J Aerosp Eng, 231, pp. 2464–2478 (2017). DOI:10.1177/0954410016667150.
[20] Szekrenyes, A. "Application of Reddy’s third-order theory to delaminated orthotropic composite plates", Eur J Mech / A Solids, 43, pp. 9–24 (2014). DOI:10.1016/j.euromechsol.2013.08.004.
[21] Nasrine, B., Mohamed, B., Kada, D., Abdelouahed, T., Fouad, B., Anis, B. A. "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct Syst, 25(4), pp. 409–422 (2020). DOI:10.12989/SSS.2020.25.4.409.
[22] Kada, D., Anis, B. A., Abdelouahed, T., Afaf, S. A., Abdeldjebbar, T., and Mahmoud, S. R. "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput Concr, 24(4), pp. 369–378 (2019). DOI:10.12989/CAC.2019.24.4.369.
[23] Moussa, A., Abdelbaki, C., Habib, H., Abdelhakim, K., Abdeldjebbar, T., Anis, B. A., and Abdelouahed, T. "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput Concr, 24(6), pp. 489–98 (2019). DOI:10.12989/CAC.2019.24.6.489.
[24] Othmane, A., Kada, D., Anis, B. A., Fouad, B., Abdeldjebbar, T., Halim, B. K., S. R. Mahmoud, Adda, E. A. B., and Abdelouahed, T. "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput Concr, 26(2), pp. 185–201 (2020). DOI:10.12989/CAC.2020.26.2.185.
[25] Nasrine, B., Kada, D., Anis, B. A., Mohamed, B., Abdelouahed, T., and M. Mohammadimehr. "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos Struct, 33(1), pp. 81–92 (2019). DOI:10.12989/SCS.2019.33.1.081.
[26] Sahla, M., Saidi, H., Draiche, K., Bousahla, A. A., Bourada, F., and Tounsi, A. "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos Struct, 33(5), pp. 663–679 (2019). DOI: 10.12989/scs.2019.33.5.663.
[27] Cherif, R. M., Abdelhakim, K., Anis, B. A., Fouad, B., Abdeldjebbar, T., Adda, B. E. A., S. R. M., Halim, B. K., and Abdelouahed, T. "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput Concr, 25(3), pp. 225–244 (2020). DOI:10.12989/CAC.2020.25.3.225.
[28] Salah, R., Anis, B. A., Abdelhakim, B., Abderrahmane, M., Fouad, B., Abdeldjebbar, T., Adda, B. E. A., S. R. M., Kouider, H. B., and Abdelouahed, T. "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput Concr, 25(4), pp. 311–325 (2020). DOI: 10.12989/CAC.2020.25.4.311.
[29] Menasria, A., Kaci, A., Anis, B. A., Bourada, F., Tounsi, A., Halim, B. K., Abdelouahed, T., Adda, B. E. A., and S. R. M. "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos Struct, 36(3), pp. 355–367 (2020). DOI: 10.12989/scs.2020.36.3.355.
[30] Abdallah, Z., Anis, B. A., Fouad, B., Halim, B. K., Abdeldjebbar, T., Adda, B. E. A., S. R. M., and Abdelouahed, T. "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput Concr, 26(1), 63–74 (2020). DOI:10.12989/CAC.2020.26.1.063.
[31] S. A, M. M, and Abdelouahed, T. "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct Eng Mech, 71(5), pp. 485–502 (2019). DOI:10.12989/SEM.2019.71.5.485.
[32] Al-Furjan, M. S. H., Habibi, M., Jung, D. won, Sadeghi, S., Safarpour, H., Tounsi, A., and Chen, G. "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng Comput, 2020. DOI:10.1007/s00366-020-01130-8.
[33] Reddy, J. N., and Liu, C. F. "A Higher-Order Shear Deformation Theory of Laminated Elastic Shells",
J Eng Sci,
23(3), pp. 319–330 (1985). DOI:
10.1016/0020-7225(85)90051-5.
[34] Xiao, J. R., Gilhooley, D. F., Batra, R. C., Gillespie, J. W., and McCarthy, M. A. "Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method", Compos Part B Eng, 39(2), pp. 414–427 (2008). DOI:10.1016/j.compositesb.2006.12.009.
[35] Achryya, A. K., Chakravorty, D., and Karmakar, A. "Bending characteristics of delaminated composite cylindrical shells - A finite element approach", J Reinf Plast Compos, 28(8), pp. 965–978 (2009). DOI:10.1177/0731684407087585.
[36] Hirwani, C. K., Panda, S. K., Mahapatra, S. S., Mandal, S. K., Srivastava, L., Buragohain, M. K. "Flexural strength of delaminated composite plate :An experimental validation", Int J Damage Mech, 27 (2), pp. 296–329 (2018). DOI:10.1177/1056789516676515.
[37] Cunedioglu, Y., and Beylergil, B. "Free vibration analysis of laminated composite beam under room and high temperatures", Struct Eng Mech, 51(1), pp. 111–130 (2014). DOI:10.12989/sem.2014.51.1.111.
[38] Cunedioglu, Y., and Beylergil, B. "Free vibration analysis of damaged composite beams", Struct Eng Mech, 55(1), pp. 79–92 (2015). DOI:10.12989/sem.2015.55.1.079.
[39] Beylergil, B. "Multi-objective optimal design of hybrid composite laminates under eccentric loading", Alexandria Eng J, 2020. DOI:10.1016/j.aej.2020.09.015.
[40] Dong, C., Davies, I. J. "Effect of stacking sequence on the flexural properties of carbon and glass fibre-reinforced hybrid composites", Adv Compos Hybrid Mater, 1, pp. 530–540 (2018). DOI: 10.1007/s42114-018-0034-5.
[41] Dong, C., and Davies, I. J. "Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites", Mater Des, 37, pp. 450–457 (2012).
[42] Alipour, M. M. "An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations", Arch Civ Mech Eng, 16(2), pp. 193–210 (2016). DOI:10.1016/j.acme.2015.11.001.
[43] Mehar, K., and Panda, S. K. "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation. Adv Polym Technol, 37(6), pp. 1643–1657 (2018). DOI:10.1002/adv.21821.
[44] Noureddine, B., Mohamed, Z., Anis, B. A., Fouad, B., Abdeldjebbar, T., Halim, B. K.,Adda, B. E. A., S. R. M., and Abdelouahed, T. "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput Concr, 26(3), pp. 213–26 (2020). DOI:10.12989/CAC.2020.26.3.213.
[45] Anis, B. A, Fouad, B., S. R. M., Abdeldjebbar, T., Ali, A., Adda, B. E. A., and Abdelouahed, T. "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput Concr, 25(2), pp. 155–166 (2020). DOI:10.12989/CAC.2020.25.2.155.
[46] Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A. A., Abdeldjebbar, T., and S. R. M. "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos Struct, 32(5), pp. 595–610 (2019). DOI: 10.12989/scs.2019.32.5.595.
[47] Fouad, B., Anis, B. A., Abdeldjebbar, T., Adda, B. E. A., S. R. M., Halim, B. K., and Abdelouahed, T. "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput Concr, 25(6), pp. 485–495 (2020). DOI:10.12989/CAC.2020.25.6.485.
[48] Zhu, P., Lei, Z. X., and Liew, K. M. "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos Struct, 94(4), pp. 1450–1460 (2012). DOI: 10.1016/j.compstruct.2011.11.010.
[49] Lei, Z. X., Yin, B. B., and Liew, K.M. "Bending and Vibration Behaviors of Matrix Cracked Hybrid Laminated Plates Containing CNTR-FG Layers and FRC Layers", Compos Struct, 184, pp. 314–326 (2018). DOI:10.1016/j.compstruct.2017.10.004.
[50] Sahu, P., Sharma, N., and Panda, S. K. "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos Struct, 241, 112073 (2020). DOI:10.1016/j.compstruct.2020.112073.
[51] Cook, R. D., Malkus, D. S., and Plesha, M. E. "Concepts and applications of finite element analysis", 3rd ed. Singapore: John Willy and Sons, 2000.
[52] Kant, T., and Swaminathan, K. "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos Struct, 56(4), pp. 329–344 (2002). DOI: 10.1016/S0263-8223(02)00017-X.