Multi-layer advanced fiber hybridisation (glass-carbon-Kevlar) and variable stiffness effect on composite structure responses (stress and deformation): An FE approach

Document Type : Article

Authors

1 School of Mechanical Engineering, KIIT, (Deemed to be University) Bhubaneswar, 751024, India

2 Department of Mechanical Engineering, NIT Rourkela, 769008, India

Abstract

This article reported the influence of one/more numbers advanced layer fibre hybridization effect on the composite structural stiffness and the stress behaviour under the variable loading (uniformly distributed and sinusoidal) are computed numerically through an isoparametric finite element approach. This is the first time the hybrid composite panel model is derived in the framework of the higher-order kinematic model to satisfy the inter-laminar stress continuity via the strains. The necessary structural equilibrium equations under the influence of variable mechanical loadings are derived through the variational principle to compute the panel’s central point deflections, as well as the stress values. The varied structural stiffness and their corresponding deflection parameters due to the hybridization of different advanced fibres (Carbon/Glass/Kevlar) are obtained through an in-house computer code (prepared in MATLAB) by incorporating the necessary elastic constant through the constitutive relationship. The steadiness of the numerical solution is confirmed and extended further to verify the necessary solution correctness by solving a different number of examples similar to the published results. The influences of structural parameters relevant to the geometry, boundary conditions and the order of hybridizing layers on the bending strength have been highlighted by solving a series of examples and explained in details.

Keywords


References
 [1]      Wang, Y., Li, J., and Zhao, D. "Mechanical properties of fiber glass and kevlar woven fabric reinforced composites", Compos Eng, 5(9), pp. 1159–1175 (1995). DOI: 10.1016/0961-9526(95)00100-2.
[2]      Matykiewicz, D. "Hybrid epoxy composites with both powder and fiber filler: A review of mechanical and thermomechanical properties", Materials, 13, pp. 1–22 (2020). DOI:10.3390/MA13081802.
[3]      Valenca, S. L., Griza, S., Oliveira, V. G. de, Sussuchi, E. M., and Cunha, F. G. C. de, "Evaluation of the mechanical behaviour of epoxy composites reinforced with kevlar plain fabric and glass/kevlar hybrid fabric", Compos Part B, 70, pp. 1–8 (2015). DOI: 10.1016/j.compositesb.2014.09.040.
[4]      Jarukumjorn,  K., and Suppakarn, N. "Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites", Compos Part B, 40, pp. 623–627 (2009). DOI: 10.1016/j.compositesb.2009.04.007.
[5]      Reis, P. N. B., Ferreira, J. A. M., Antunes, F. V., and Costa, J. D. M. "Flexural behaviour of hybrid laminated composites", Compos Part A Appl Sci Manuf, 38, pp. 1612–1620 (2007). DOI:10.1016/j.compositesa.2006.11.010.
[6]      Dorigato, A., and Pegoretti, A. "Flexural and impact behaviour of carbon/basalt fibers hybrid laminates", J Compos Mater, 48, pp. 1121–30 (2014). DOI:10.1177/0021998313482158.
[7]      Ary, Subagia, I. D. G., and Kim, Y. "A study on flexural properties of carbon-basalt/epoxy hybrid composites", J Mech Sci Technol, 27(4), pp. 987–992 (2013). DOI:10.1007/s12206-013-0209-5.
[8]      Pandya, K. S., Veerraju, C., and Naik, N. K. "Hybrid composites made of carbon and glass woven fabrics under quasi-static loading", Mater Des, 32(7), pp. 4094–4099 (2011). DOI: 10.1016/j.matdes.2011.03.003.
[9]      Subagia, I. D. G. A., Kim, Y., Tijing, L. D., Kim, C. S., Shon, H. K. "Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers", Compos: Part B, 58, pp. 251–258 (2014). DOI: 10.1016/j.compositesb.2013.10.027.
[10]    Wang, Q., Wu, W., Gong, Z., and Li, W. "Flexural progressive failure of carbon/glass interlayer and intralayer hybrid composites", Materials, 11(4), pp. 1–18 (2018). DOI:10.3390/ma11040619.
[11]    Fischer, S., and Marom, G. "The flexural behaviour of aramid fibre hybrid composite materials", Compos Sci Technol, 28(4), pp. 291–314 (1987). DOI: 10.1016/0266-3538(87)90027-3.
[12]    Dong, C., Ranaweera-Jayawardena, H. A., and Davies, I. J. "Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres", Compos Part B, 43(2), pp. 573–581 (2012). DOI:10.1016/j.compositesb.2011.09.001.
[13]    Dong, C., and Davies, I. J. "Flexural properties of E-glass and TR50S carbon fiber reinforced epoxy hybrid composites", J Mater Eng Perform, 22, pp. 41-49 (2013). DOI: 10.1007/s11665-012-0247-7.
[14]    Dong, C., and Davies, I. J. "Flexural properties of glass and carbon fiber reinforced epoxy hybrid composites", J Mater Des Appl, 227(4), pp. 308–317 (2012). DOI:10.1177/1464420712459396.
[15]    Dong, C., Duong, J., and Davies, I. J. "Flexural properties of S-2 Glass and TR30S carbon fiber-reinforced epoxy hybrid composites", Polym Compos, 37(1), pp. 915–924 (2012). doi:10.1002/pc.22206.
[16]    Naidu, P. P, Raghavendra, G., Ojha, S., and Paplal, B. "Effect of g-C3N4 nanofiller as filler on mechanical properties of multidirectional glass fiber epoxy hybrid composites", J Appl Polym Sci, 137, pp. 1-9 (2020). DOI:10.1002/app.48413.
[17]    Doddi, P. R. V., Chanamala, R., and Dora, S. P. "Effect of fiber orientation on dynamic mechanical properties of PALF hybridized with basalt reinforced epoxy composites", Mater. Res. Express, 7, 015329 (2020). DOI:10.1088/2053-1591/ab6771.
[18]    James, D. J. D., Manoharan, S., Saikrishnan, G., and Arjun, S. "Influence of Bagasse/Sisal fibre stacking sequence on the mechanical characteristics of hybrid-epoxy composites", J Nat Fibers, 17, pp. 1497–1507 (2019). DOI:10.1080/15440478.2019.1581119.
[19]    Arani, A. G., Mosayyebi, M., Kolahdouzan, F., Kolahchi, R., and Jamali, M. "Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers". J Aerosp Eng, 231, pp. 2464–2478 (2017). DOI:10.1177/0954410016667150.
[20]    Szekrenyes, A. "Application of Reddy’s third-order theory to delaminated orthotropic composite plates", Eur J Mech / A Solids, 43, pp. 9–24 (2014). DOI:10.1016/j.euromechsol.2013.08.004.
[21]    Nasrine, B., Mohamed, B., Kada, D., Abdelouahed, T., Fouad, B., Anis, B. A. "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct Syst, 25(4), pp. 409–422 (2020). DOI:10.12989/SSS.2020.25.4.409.
[22]    Kada, D., Anis, B. A., Abdelouahed, T., Afaf, S. A., Abdeldjebbar, T., and  Mahmoud, S. R. "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput Concr, 24(4), pp. 369–378 (2019). DOI:10.12989/CAC.2019.24.4.369.
[23]    Moussa, A., Abdelbaki, C., Habib, H., Abdelhakim, K., Abdeldjebbar, T., Anis, B. A., and Abdelouahed, T. "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput Concr, 24(6), pp. 489–98 (2019). DOI:10.12989/CAC.2019.24.6.489.
[24]    Othmane, A., Kada, D., Anis, B. A., Fouad, B., Abdeldjebbar, T., Halim, B. K., S. R. Mahmoud, Adda, E. A. B., and Abdelouahed, T. "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput Concr, 26(2), pp. 185–201 (2020). DOI:10.12989/CAC.2020.26.2.185.
[25]    Nasrine, B., Kada, D., Anis, B. A., Mohamed, B., Abdelouahed, T., and M. Mohammadimehr. "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos Struct, 33(1), pp. 81–92 (2019). DOI:10.12989/SCS.2019.33.1.081.
 
[26]    Sahla, M., Saidi, H., Draiche, K., Bousahla, A. A., Bourada, F., and Tounsi, A. "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos Struct, 33(5), pp. 663–679 (2019). DOI: 10.12989/scs.2019.33.5.663.
[27]    Cherif, R. M., Abdelhakim, K., Anis, B. A., Fouad, B., Abdeldjebbar, T., Adda, B. E. A., S. R. M., Halim, B. K., and  Abdelouahed, T. "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput Concr, 25(3), pp. 225–244 (2020). DOI:10.12989/CAC.2020.25.3.225.
[28]    Salah, R., Anis, B. A., Abdelhakim, B., Abderrahmane, M., Fouad, B., Abdeldjebbar, T., Adda, B. E. A., S. R. M., Kouider, H. B., and Abdelouahed, T. "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput Concr, 25(4), pp. 311–325 (2020). DOI: 10.12989/CAC.2020.25.4.311.
[29]    Menasria, A., Kaci, A., Anis, B. A., Bourada, F., Tounsi, A., Halim, B. K., Abdelouahed, T., Adda, B. E. A., and S. R. M. "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos Struct, 36(3), pp. 355–367 (2020). DOI: 10.12989/scs.2020.36.3.355.
[30]    Abdallah, Z., Anis, B. A., Fouad, B., Halim, B. K., Abdeldjebbar, T., Adda, B. E. A., S. R. M., and Abdelouahed, T. "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput Concr, 26(1), 63–74 (2020). DOI:10.12989/CAC.2020.26.1.063.
[31]    S. A, M. M, and Abdelouahed, T. "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct Eng Mech, 71(5), pp. 485–502 (2019). DOI:10.12989/SEM.2019.71.5.485.
[32]    Al-Furjan, M. S. H., Habibi, M., Jung, D. won, Sadeghi, S., Safarpour, H., Tounsi, A., and Chen, G. "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng Comput, 2020. DOI:10.1007/s00366-020-01130-8.
[33]    Reddy, J. N., and Liu, C. F. "A Higher-Order Shear Deformation Theory of Laminated Elastic Shells", J Eng Sci, 23(3), pp. 319–330 (1985). DOI: 10.1016/0020-7225(85)90051-5.
[34]    Xiao, J. R., Gilhooley, D. F., Batra, R. C., Gillespie, J. W., and McCarthy, M. A. "Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method", Compos Part B Eng, 39(2), pp. 414–427 (2008). DOI:10.1016/j.compositesb.2006.12.009.
[35]    Achryya, A. K., Chakravorty, D., and Karmakar, A. "Bending characteristics of delaminated composite cylindrical shells - A finite element approach", J Reinf Plast Compos, 28(8), pp. 965–978 (2009). DOI:10.1177/0731684407087585.
[36]    Hirwani, C. K., Panda, S. K., Mahapatra, S. S., Mandal, S. K., Srivastava, L., Buragohain, M. K. "Flexural strength of delaminated composite plate :An experimental validation", Int J Damage Mech, 27 (2), pp. 296–329 (2018). DOI:10.1177/1056789516676515.
[37]    Cunedioglu, Y., and Beylergil, B. "Free vibration analysis of laminated composite beam under room and high temperatures", Struct Eng Mech, 51(1), pp. 111–130 (2014). DOI:10.12989/sem.2014.51.1.111.
[38]    Cunedioglu, Y., and Beylergil, B. "Free vibration analysis of damaged composite beams", Struct Eng Mech, 55(1), pp. 79–92 (2015). DOI:10.12989/sem.2015.55.1.079.
[39]    Beylergil, B. "Multi-objective optimal design of hybrid composite laminates under eccentric loading", Alexandria Eng J, 2020. DOI:10.1016/j.aej.2020.09.015.
[40]    Dong, C., Davies, I. J. "Effect of stacking sequence on the flexural properties of carbon and glass fibre-reinforced hybrid composites", Adv Compos Hybrid Mater, 1, pp. 530–540 (2018). DOI: 10.1007/s42114-018-0034-5.
[41]    Dong, C., and Davies, I. J. "Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites", Mater Des, 37, pp. 450–457 (2012).
[42]    Alipour, M. M. "An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations", Arch Civ Mech Eng, 16(2), pp. 193–210 (2016). DOI:10.1016/j.acme.2015.11.001.
[43]    Mehar, K., and Panda, S. K. "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation. Adv Polym Technol, 37(6), pp. 1643–1657 (2018). DOI:10.1002/adv.21821.
[44]    Noureddine, B., Mohamed, Z., Anis, B. A., Fouad, B., Abdeldjebbar, T., Halim, B. K.,Adda, B. E. A., S. R. M., and Abdelouahed, T. "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput Concr, 26(3), pp. 213–26 (2020). DOI:10.12989/CAC.2020.26.3.213.
[45]    Anis, B. A, Fouad, B., S. R. M., Abdeldjebbar, T., Ali, A., Adda, B. E. A., and Abdelouahed, T. "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput Concr, 25(2), pp. 155–166 (2020). DOI:10.12989/CAC.2020.25.2.155.
[46]    Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A. A., Abdeldjebbar, T., and S. R. M.   "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos Struct, 32(5), pp. 595–610 (2019). DOI: 10.12989/scs.2019.32.5.595.
[47]    Fouad, B., Anis, B. A., Abdeldjebbar, T., Adda, B. E. A., S. R. M., Halim, B. K., and Abdelouahed, T. "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput Concr, 25(6), pp. 485–495 (2020). DOI:10.12989/CAC.2020.25.6.485.
[48]    Zhu, P., Lei, Z. X., and Liew, K. M. "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos Struct, 94(4), pp. 1450–1460 (2012). DOI: 10.1016/j.compstruct.2011.11.010.
[49]    Lei, Z. X., Yin, B. B., and Liew, K.M. "Bending and Vibration Behaviors of Matrix Cracked Hybrid Laminated Plates Containing CNTR-FG Layers and FRC Layers", Compos Struct, 184, pp. 314–326 (2018). DOI:10.1016/j.compstruct.2017.10.004.
[50]    Sahu, P., Sharma, N., and Panda, S. K. "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos Struct, 241, 112073 (2020). DOI:10.1016/j.compstruct.2020.112073.
[51]    Cook, R. D., Malkus, D. S., and Plesha, M. E. "Concepts and applications of finite element analysis", 3rd ed. Singapore: John Willy and Sons, 2000.
[52]    Kant, T., and Swaminathan, K. "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos Struct, 56(4), pp. 329–344 (2002). DOI: 10.1016/S0263-8223(02)00017-X.
Volume 28, Issue 5
Transactions on Mechanical Engineering (B)
September and October 2021
Pages 2701-2718
  • Receive Date: 23 September 2020
  • Revise Date: 31 October 2020
  • Accept Date: 07 December 2020