Machine learning in structural engineering

Document Type : Review Article

Authors

1 ENAP-RG, CA Sistemas Dinamicos, Faculty of Engineering, Departments of Electromechanical, and Biomedical Engineering, Autonomous University of Queretaro, Campus San Juan del Rio, Moctezuma 249, Col. San Cayetano, 76807, San Juan del Rio, Queretaro, Mexico.

2 Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43220, U.S.A

Abstract

This article presents a review of selected articles about structural engineering applications of machine learning (ML) in the past few years. It is divided into the following areas: structural system identification, structural health monitoring, structural vibration control, structural design, and prediction applications. Deepneural networkalgorithms have beenthe subject of a large number of articles in civil and structural engineering.There are, however, otherML algorithms with great potential in civil and structural engineering that are worth exploring. Four novel supervised ML algorithms developed recently by the senior author and his associates with potential applications in civil/structural engineering are reviewed in this paper. They are the Enhanced Probabilistic Neural Network (EPNN), the Neural Dynamic Classification (NDC) algorithm, the Finite Element Machine (FEMa), and the Dynamic Ensemble Learning (DEL) algorithm

Keywords


  1. References:

    1. Vera-Olmos, F.J., Pardo, E., Melero, H., and Malpica, N. DeepEye: Deep convolutional network for pupil detection in real environments", Integrated Computer-Aided Engineering, 26(1), pp. 85{95 (2019).

    2. Yang, T., Cappelle, C., Ruichek, Y., and El Bagdouri, M. Multi-object tracking with discriminant correlation _lter based deep learning tracker", Integrated Computer-Aided Engineering, 26(3), pp. 273{284 (2019). 
    3. Benito-Picazo, J., Dom__nguez, E., Palomo, E.J., and L_opez-Rubio, E. Deep learning-based video surveillance system managed by low cost hardware and panoramic cameras", Integrated Computer-Aided Engineering, 27(4), pp. 373{387 (2020). 
    4. Reyes, O. and Ventura, S. Performing multi-target regression via a parameter sharing-based deep network", International Journal of Neural Systems, 29(9), 1950014 (22 pages) (2019). 
    5. Wang, P. and Bai, X. Regional parallel structure based CNN for thermal infrared face identi_cation", Integrated Computer-Aided Engineering, 25(3), pp. 247{260 (2018). 
    6. Rodriguez-Lera, F.J., Rico, F.M., and Olivera, V.M. Neural networks for recognizing human activities in home-like environments", Integrated Computer-Aided Engineering, 26(1), pp. 37{47 (2019). 
    7. Hua, C., Wang, H., Wang, H., Lu, S., Liu, C., and Khalid, S.M. A novel method of building functional brain network using deep learning algorithm with application in pro_ciency detection", International Journal of Neural Systems, 29(1), 1850015 (17 pages) (2019). 
    8. Gaur, P., McCreadie, K., Pachori, R.B., Wang, H., and Prasad, G. Tangent space feature-based transfer learning classi_cation model for two-class motor imagery brain-computer interface", International Journal of Neural Systems, 29(10), 19500215 (17 pages) (2019). 
    9. Lozano, A., Su_arez, J.S., Soto-S_anchez, C., Garrigos, J., Martinez-Alvarez, J.J., Ferrandez, J.M., and Fernandez, E. Neurolight: a deep learning neural interface for cortical visual prostheses", International Journal of Neural Systems, 30(9), 2050045 (19 pages) (2020). 
    10. Antoniades, A., Spyrou, L., Martin-Lopez, D., Valentin, A., Alarcon, G., Sanei, S., and Took, C.C. Deep neural architectures for mapping scalp to intracranial EEG", International Journal of Neural Systems, 28(8), 1850009 (2018). 2652 J.P. Amezquita-Sanchez et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2645{2656 
    11. Ansari, A.H., Cherian, P.J., Caicedo, A., Naulaers, G., De Vos, M., and Van Hu_el, S. Neonatal seizure detection using deep convolutional neural networks", International Journal of Neural Systems, 29(4), 1850011 (20 pages) (2019). 
    12. Manzanera, M.O., Meles, S.K., Leenders, K.L., Renken, R.J., Pagani, M., Arnaldi, D., Nobili, F., Obeso, J., Oroz, M.R., Morbelli, S., and Maurits, N.M. Scaled subpro_le modeling and convolutional neural networks for the identi_cation of Parkinson's disease in 3D nuclear imaging data", International Journal of Neural Systems, 29(9), 1950010 (15 pages) (2019). 
    13. Park, S.E., Laxpati, N.G., Gutekunst, C.A., Connolly, M.J., Tung, J., Berglund, K., Mahmoudi, B., and Gross, R.E. A machine learning approach to characterize the modulation of the hippocampal rhythms via optogenetic stimulation of the medial septum", International Journal of Neural Systems, 29(10), 1950020 (21 pages) (2019). 
    14. Zhang, J., Xiao, M., Gao, L., and Chu, S. Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine", Computer-Aided Civil and Infrastructure Engineering, 34(11), pp. 991{1009 (2019). 
    15. Yu, B., Wang, H., Shan, W., and Yao, B. Prediction of bus travel time using random forests based on near neighbors", Computer-Aided Civil and Infrastructure Engineering, 33(4), pp. 333{350 (2018). 
    16. Abbasi, H., Bennet, L., Gunn, A.J., and Unsworth, C.P. Latent phase detection of hypoxic-ischemic spike transients in the EEG of preterm fetal sheep using reverse biorthogonal wavelets & fuzzy classifier", International Journal of Neural Systems, 29(10), 1950013, (17 pages) (2019). 
    17. Chen, Z. and Liu, X.C. Roadway asset inspection sampling using high-dimensional clustering and locality-sensitivity hashing", Computer-Aided Civil and Infrastructure Engineering, 34(2), pp. 116{129 (2019). 
    18. Lopez-Rubio, E., Molina-Cabello, M.A., Luque- Baena, R.M., and Dominguez, E. Foreground detection by competitive learning for varying input distributions", International Journal of Neural Systems, 28(5), 1750056 (16 pages) (2018). 
    19. Sutton, R. and Barto, A., Reinforcement Learning, 2nd Ed., MIT Press (2018). 
    20. Adeli, H. and Yeh, C. Perceptron learning in engineering design", Computer-Aided Civil and Infrastructure Engineering, 4(4), pp. 247{256 (1989). 
    21. Amezquita-Sanchez, J.P., Valtierra-Rodriguez, M., Aldwaik, M., and Adeli, H. Neurocomputing in civil infrastructure", Scientia Iranica, 23(6), pp. 2417{ 2428 (2016). 
    22. Yuen, K.V. and Mu, H.Q. Real-time system identification: an algorithm for simultaneous model class selection and parametric identi_cation", Computer- Aided Civil and Infrastructure Engineering, 30(10), pp. 785{801 (2015). 
    23. Perez-Ramirez, C.A., Amezquita-Sanchez, J.P., Adeli, H. Valtierra-Rodriguez, M., Camarena- Martinez, D., and Rene Romero-Troncoso, R.J. New methodology for modal parameters identification of smart civil structures using ambient vibrations and synchrosqueezed wavelet", Engineering Applications of Arti_cial Intelligence, 48, pp. 1{16 (2016). 
    24. Jiang, X., Mahadevan, S., and Yuan, Y. Fuzzy stochastic neural network model for structural system identi_cation", Mechanical Systems and Signal Processing, 82, pp. 394{411 (2017). 
    25. Amezquita-Sanchez, J.P., Park, H.S., and Adeli, H. A novel methodology for modal parameters identification of large smart structures using MUSIC, empirical wavelet transform, and Hilbert transform", Engineering Structures, 147, pp. 148{159 (2017). 
    26. Karami, K., Fatehi, P., and Yazdani, A. On-line system identification of structures using wavelet- Hilbert transform and sparse component analysis", Computer-Aided Civil and Infrastructure Engineering, 35(8), pp. 870{886 (2020). 
    27. Perez-Ramirez, C.A., Amezquita-Sanchez, J.P., Valtierra-Rodriguez, M., and Adeli, H. Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings", Engineering Structures, 178, pp. 603{615 (2019). 
    28. Wu, W.H., Chen, C.C., Jhou, J.W., and Lai, G. A rapidly convergent empirical mode decomposition method for analyzing the environmental temperature e_ects on stay cable force", Computer-Aided Civil and Infrastructure Engineering, 33(8), pp. 672{690 (2018). 
    29. Zhang, S., Zhou, L., Chen, X., Zhang, L., Li, L., and Li, M. Network-wide tra_c speed forecasting: 3D convolutional neural network with ensemble empirical mode decomposition", Computer-Aided Civil and Infrastructure Engineering, 35(10), pp. 1132{ 1147 (2020). 
    30. Saadaoui, F. and Ben Messaoud, O. Multiscaled neural autoregressive distributed lag: a new empirical mode decomposition model for nonlinear time series forecasting", International Journal of Neural Systems, 30(8), 2050039 (15 pages) (2020). 
    31. Wang, J., Liu, X.Z., and Ni, Y.Q. A Bayesian probabilistic approach for acoustic emission-based rail condition assessment", Computer-Aided Civil and Infrastructure Engineering, 33(1), pp. 21{34 (2018). 
    32. Yao, X.J., Yi, T.H., Qu, C., and Li, H.N. Blind modal identi_cation using limited sensors through modi_ed sparse component analysis by timefrequency method", Computer-Aided Civil and Infrastructure Engineering, 33(9), pp. 769{782 (2018). J.P. Amezquita-Sanchez et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2645{2656 2653 
    33. Yuen, K.X. and Huang, K. Identi_ability-enhanced Bayesian frequency-domain substructure identi_cation", Computer-Aided Civil and Infrastructure Engineering, 33(9), pp. 800{812 (2018). 34. Yuen, K.V., Kuok, S.C., and Dong, L. Selfcalibrating Bayesian real-time system identi_cation", Computer-Aided Civil and Infrastructure Engineering, 34(9), pp. 806{821 (2019). 
    35. Tian, Y., Zhang, J., and Yu, S. Rapid impact testing and system identi_cation of footbridges using particle image velocimetry", Computer-Aided Civil and Infrastructure Engineering, 34(2), pp. 130{145 (2019). 
    36. Kosti_c, B. and Gul, M. Vibration-based damage detection of bridges under varying temperature effects using time-series analysis and artificial neural networks", Journal of Bridge Engineering, 22(10), 04017065 (2017). 
    37. Pan, H., Azimi, M., Yan, F., and Lin, Z. Timefrequency- based data-driven structural diagnosis and damage detection for cable-stayed bridges", Journal of Bridge Engineering, 23(6), 04018033 (2018). 
    38. Yanez-Borjas, J.J., Valtierra-Rodriguez, M., Camarena-Martinez, D., and Amezquita-Sanchez, J.P. Statistical time features for global corrosion assessment in a truss bridge from vibration signals", Measurement, 160, 107858 (2020). 
    39. Amezquita-Sanchez, J.P. Entropy algorithms for detecting incipient damage in high-rise buildings subjected to dynamic vibrations", Journal of Vibration and Control (In press) (2020). DOI: 10.1177/1077546320929145 
    40. Ettouney, M.M. and Alampalli, S., Infrastructure Health in Civil Engineering: Theory and Components, CRC press (2016). 
    41. Torres, J.F., Galicia, A., Troncoso, A., and Mart__nez- _Alvarez, F. A scalable approach based on deep learning for big data time series forecasting", Integrated Computer-Aided Engineering, 25(4), pp. 335{ 348 (2018). 
    42. Valtierra-Rodriguez, M., Rivera-Guillen, J.R., Basurto-Hurtado, J.A. De-Santiago-Perez, J.J., Granados-Lieberman, D., and Amezquita-Sanchez, J.P. Convolutional neural network and motor current signature analysis during the transient state for detection of broken rotor bars in induction motors", Sensors, 20(13), 3721 (2020). 
    43. Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H., and Inman, D.J. 1-D CNNs for structural damage detection: Veri_cation on a structural health monitoring benchmark data", Neurocomputing, 275, pp. 1308{1317 (2018). 
    44. Krishnasamy, L. and Arumulla, R.M.R. Baselinefree hybrid diagnostic technique for detection of minor incipient damage in the structure", Journal of Performance of Constructed Facilities, 33(2), 04019018 (2019). 
    45. Rafiei, M.H. and Adeli, H. A new neural dynamic classi_cation algorithm", IEEE Transactions on Neural Networks and Learning Systems, 28(12), pp. 3074{3083 (2017). 
    46. Ibrahim, A., Eltawil, A., Na, Y., and El-Tawil, S. A machine learning approach for structural health monitoring using noisy data sets", IEEE Transactions on Automation Science and Engineering, 17(2), pp. 900{908 (2019). 
    47. Zhang, Y., Miyamori, Y., Mikami, S., and Saito, T. Vibration-based structural state identi_cation by a 1-dimensional convolutional neural network", Computer-Aided Civil and Infrastructure Engineering, 34(9), pp. 822{839 (2019). 
    48. Huang, Y., Beck, J.L., and Li, H. Multitask sparse Bayesian learning with applications in structural health monitoring", Computer-Aided Civil and Infrastructure Engineering, 34(9), pp. 732{754 (2019). 
    49. Wang, F., Song, G., and Mo, Y.L. Shear loading detection of through bolts in bridge structures using a percussion-based one-dimensional memory-augmented convolutional neural network", Computer-Aided Civil and Infrastructure Engineering (In press) (2020). DOI: 10.1111/mice.12602 
    50. Naranjo-P_erez, J., Infantes, M., Jim_enez-Alonso, J.F., and S_aez, A. A collaborative machine learningoptimization algorithm to improve the finite element model updating of civil engineering structures", Engineering. Structures, 225, 111327 (2020). 
    51. Wang, Z. and Cha, Y.J. Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect structural damage", Structural Health Monitoring (In press) (2020). DOI: 10.1177/1475921720934051 
    52. Sajedi, S.O. and Liang, X. Vibration-based semantic damage segmentation for large-scale structural health monitoring", Computer-Aided Civil and Infrastructure Engineering, 35(6), pp. 579{596 (2020). 
    53. Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S., and Buyukozturk, O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Computer-Aided Civil and Infrastructure Engineering, 33(9), pp. 731{ 747 (2018). 
    54. Gao, Y. and Mosalam, K.M. Deep transfer learning for image-based structural damage recognition", Computer-Aided Civil and Infrastructure Engineering, 33(9), pp. 748{768 (2018). 
    55. Zhang, X., Rajan, D., and Story, B. Concrete crack detection using context-aware deep semantic segmentation network", Computer-Aided Civil and Infrastructure Engineering, 34(11), pp. 951{971 (2019) 
    56. Wu, R.T., Ankush Singla, A., Jahanshahi, M.R., Bertino, E., Ko, B.J., and Verma, D. Pruning deep convolutional neural networks for efficient edge computing in condition assessment of civil infrastructures", Computer-Aided Civil and Infrastructure Engineering, 34(9), pp. 774{789 (2019). 2654 J.P. Amezquita-Sanchez et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2645{2656 
    57. Nayyeri, F., Hou, L., Zhou, J., and Guan, H. Foreground-background separation technique for road and bridge crack detection", Computer-Aided Civil and Infrastructure Engineering, 34(6), pp. 457{ 470 (2019). 
    58. Deng, J., Lu, Y., and Lee, V.C.S. Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network", Computer-Aided Civil and Infrastructure Engineering, 35(4), pp. 373{388 (2020). 
    59. Pan, X. and Yang, T.Y. Post-disaster imaged-based damage detection and repair cost estimation of reinforced concrete buildings using dual convolutional neural networks", Computer-Aided Civil and Infrastructure Engineering, 35(5), pp. 495{510 (2020). 
    60. Liu, Y.F., Nie, X., Fan, J.S., and Liu, X.G. Imagebased crack assessment of bridge piers using unmanned aerial vehicles and 3D scene reconstruction", Computer-Aided Civil and Infrastructure Engineering, 35(5), pp. 511{529 (2020). 
    61. Jiang, S. and Zhang, J. Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system", Computer-Aided Civil and Infrastructure Engineering, 35(6), pp. 549{564 (2020). 
    62. Athanasiou, A., Ebrahimkhanlou, A., Zaborac, J., Hrynyk, T., and Salamone, S. A machine learning approach based on multifractal features for crack assessment of reinforced concrete shells", Computer- Aided Civil and Infrastructure Engineering, 35(6), pp. 565{578 (2020). 
    63. Ying, Z. and Ni, Y. Advances in structural vibration control application of magneto-rheological visco-elastomer", Journal of Theoretical and Applied Mechanics, 7(2), pp. 61{66 (2017). 
    64. Lu, Z., Wang, Z., Zhou, Y., and Lu, X. Nonlinear dissipative devices in structural vibration control: A review", Journal of Sound and Vibration, 423, pp. 18{49 (2018). 
    65. Deng, Z. and Dapino, M.J. Review of magnetostrictive materials for structural vibration control", Smart Materials and Structures, 27(11), 113001 (2018). 
    66. Elias, S. and Matsagar, V. Research developments in vibration control of structures using passive tuned mass dampers", Annual Reviews in Control, 44, pp. 129{156 (2017). 
    67. Rahimi, F., Aghayari, R., and Samali, B. Application of tuned mass dampers for structural vibration control: a state-of-the-art review", Civil Engineering Journal, 6(8), pp. 1622{1651 (2020). 
    68. Chiew, F.H., Ng, C.K., Chai, K.C., and Tay, K.M. A fuzzy adaptive resonance theory-based model for mix proportion estimation of high performance concrete", Computer-Aided Civil and Infrastructure Engineering, 32(9), pp. 772{786 (2017). 
    69. Padillo, F., Luna, J.M., Herrera, F., and Ventura, S. Mining association rules on big data through mapreduce genetic programming", Integrated Computer- Aided Engineering, 25(1), pp. 31{48 (2018). 
    70. Wang, N. and Adeli, H. Self-constructing wavelet neural network algorithm for nonlinear control of large structures", Engineering Applications of Artificial Intelligence, 41, pp. 249{258 (2015). 
    71. Chen, H.Y., and Liang, J.W. Adaptive wavelet neural network controller for active suppression control of a diaphragm-type pneumatic vibration isolator", International Journal of Control, Automation and Systems, 15(3), pp. 1456{1465 (2017). 
    72. Bui, H.L., Le, T.A., and Bui, V.B. Explicit formula of hedge-algebras-based fuzzy controller and applications in structural vibration control", Applied Soft Computing, 60, pp. 150{166 (2017). 
    73. Wang, J., Huang, Y., Wang, T., Zhang, C., and Liu, Y. Fuzzy finite-time stable compensation control for a building structural vibration system with actuator failures", Applied Soft Computing, 93, 106372 (2020). 
    74. Fu, J., Lai, J., Yang, Z., Bai, J., and Yu, M. Fuzzyneural network control for a magnetorheological elastomer vibration isolation system", Smart Materials and Structures, 29(7), 074001 (2020). 
    75. Rahmani, H.R., Chase, G., Wiering, M., and Konke, C. A framework for brain learning-based control of smart structures", Advanced Engineering Informatics, 42, 100986 (2019). 
    76. Lu, X., Liao, W., Huang, W., Xu, Y., and Chen, X. An improved linear quadratic regulator control method through convolutional neural network-based vibration identification", Journal of Vibration and Control (In press) https://doi.org/10.1177/1077546320933756 (2020). DOI: 10.1177/1077546320933756 
    77. Adeli, H. and Yeh, C. Explanation-based machine learning in engineering design", Engineering Applications of Artificial Intelligence, 3(2), pp. 127{137 (1990). 
    78. Rafiei, M.H., Khushefati, W.H., Demirboga, R., and Adeli, H. Novel approach for concrete mix design using neural dynamics model and the virtual lab concept", ACI Materials Journal, 114(1), pp. 117{ 127 (2017). 
    79. Adeli, H. and Park, H.S., Neurocomputing for Design Automation, Boca Raton, Florida: CRC Press (1998). 
    80. Zheng, H., Moosavi, V., and Akbarzadeh, M. Machine learning assisted evaluations in structural design and construction", Automation in Construction, 119, 103346 (2020). 
    81. Greco, A., Cannizzaro, F., and Pluchino, A. Seismic collapse prediction of frame structures by means of genetic algorithms", Engineering Structures, 143, pp. 152{168 (2017). 
    82. Asteris, P.G., and Nikoo, M. Arti_cial bee colonybased neural network for the prediction of the fundamental period of in_lled frame structures", Neural Computing and Applications, 31(9), pp. 4837{4847 (2019). J.P. Amezquita-Sanchez et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2645{2656 2655 
    83. Luo, H. and Paal, S.G. A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments", Computer-Aided Civil and Infrastructure Engineering, 34(11), pp. 935{950 (2019). 
    84. Nie, Z., Jiang, H., and Kara, L.B. Stress field prediction in cantilevered structures using convolutional neural networks", Journal of Computing and Information Science in Engineering, 20(1), pp. 1{16 (2020). 
    85. Nguyen, T., Kashani, A., Ngo, T., and Bordas, S. Deep neural network with high-order neuron for the prediction of foamed concrete strength", Computer- Aided Civil and Infrastructure Engineering, 34(4), pp. 316{332 (2019). 
    86. Luo, X. and Kareem, A. Deep convolutional neural networks for uncertainty propagation in random fields", Computer-Aided Civil and Infrastructure Engineering, 34(12), pp. 1041{1054 (2019). 
    87. Oh, B.K., Glisic, B., Kim, Y., and Park, H.S. Convolutional neural network-based wind-induced response estimation model for tall buildings", Computer-Aided Civil and Infrastructure Engineering, 34(10), pp. 843{858 (2019). 
    88. Oh, B.K., Park, Y., and Park, H.S. Seismic response prediction method for building structures using convolutional neural network", Structural Health Monitoring, 27(5), p. e2519 (2020). 
    89. Zhang, R., Chen, Z., Chen, S., Zheng, J., Buyukozturk, O., and Sun, H. Deep long short-term memory networks for nonlinear structural seismic response prediction", Computers and Structures, 220, pp. 55{68 (2020). 
    90. Wang, J., Zhang, L., Chen, Y., and Yi, Z. A new delay connection for long short-term memory networks", International Journal of Neural Systems, 28(6), 1750061 (2018). 
    91. Gulgec, N.S., Tak_a_c, M., and Pakzad, S.N. Structural sensing with deep learning: strain estimation from acceleration data for fatigue assessment", Computer-Aided Civil and Infrastructure Engineering, 35(12), pp. 1349{1364 (2020). 
    92. Ahmadlou, M. and Adeli, H. Enhanced probabilistic neural network with local decision circles: a robust classi_er", Integrated Computer-Aided Engineering, 17(3), pp. 197{210 (2010). 
    93. Hirschauer, T.J., Adeli, H., and Buford, J.A. Computer-aided diagnosis of Parkinson's disease using enhanced probabilistic neural network", Journal of Medical Systems, 39(11), p. 179 (2015). 
    94. Amezquita-Sanchez, J.P., Adeli, A., and Adeli, H. A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG)", Behavioural Brain Research, 305, pp. 174{180 (2016). 
    95. Amezquita-Sanchez, J.P., Valtierra-Rodriguez, M., Adeli, H., and Perez-Ramirez, C. A novel wavelet transform-homogeneity model for sudden cardiac death prediction using ECG signals", Journal of Medical Systems, 42(10), p. 176 (2018). 
    96. Rafiei, M.H. and Adeli, H. NEEWS: A novel earthquake early warning model using neural dynamic classi_cation and neural dynamic optimization", Soil Dynamics and Earthquake Engineering, 100, pp. 417{ 427 (2017). 
    97. Rafiei, M.H. and Adeli, H. A novel machine learningbased algorithm to detect damage in high-rise building structures", The Structural Design of Tall and Special Buildings, 26(18), e1400 (2017). 
    98. Pereira, D.R., Piteri, M.A., Souza, A.N., Papa, J.P., and Adeli, H. FEMa: a _nite element machine for fast learning", Neural Computing and Applications, 32(10), pp. 6393{6404 (2019). 99. Schetinin, V., Jakaite, L., and Krzanowski, W. Bayesian learning of models estimating uncertainty in alert systems: application to aircraft collision avoidance", Integrated Computer-Aided Engineering, 25(3), pp. 229{245 (2018). 
    100. Molina-Cabello, M.A., Luque-Baena, R.M., L_opez- Rubio, E., and Thurnhofer-Hemsi, K. Vehicle type detection by ensembles of convolutional neural networks on super resolved images", Integrated Computer-Aided Engineering, 25(4), pp. 321{333 (2018). 
    101. Reyes, O., Fardoun, H.M., and Ventura, S. An ensemble-based method for the selection of instances in the multi-target regression problem", Integrated Computer-Aided Engineering, 25(4), pp. 305{320 (2018). 
    102. Hamreras, S., Boucheham, B., Molina-Cabello, M.A., Ben_tez-Rochel, R., and Lopez-Rubio, E. Contentbased image retrieval by ensembles of deep learning object classifiers", Integrated Computer-Aided Engineering, 27(3), pp. 317{331 (2020). 
    103. Rokibul Alam, K.M., Siddique, N., and Adeli, H. A dynamic ensemble learning algorithm for neural networks", Neural Computing and Applications, 32(10), pp. 6393{6404 (2020).

Volume 27, Issue 6 - Serial Number 6
Transactions on Civil Engineering (A)
November and December 2020
Pages 2645-2656
  • Receive Date: 14 November 2020
  • Revise Date: 01 December 2020
  • Accept Date: 18 November 2020