Experimental analysis on tensile strengthening properties of steel and glass fiber reinforced inorganic matrix composites

Document Type : Article

Authors

Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, P.O. Box 9177948974, Iran

Abstract

The fiber-reinforced inorganic matrix (FRIM) composite is a new type of composite, which has many economical and performance advantages. Beside the direct shear and bending tests, the tensile tests form an integral part in determining the mechanical properties of these composites. In this paper, to understand the tensile behavior of the FRIM composites, some strip specimens of the composites were tested which were clamped at the both ends, and the strains were measured using the extensometers installed at the middle of each strip. The inorganic matrix composites studied in this paper were constructed using two types of steel and glass fibers together with two different types of inorganic lime and geopolymer mortars. The results of direct tensile tests showed that the inorganic geopolymer mortars had the higher potential to increase the tensile load bearing of the specimens compared with the lime mortars. In addition, in most cases, the maximum values of stress, strain and the stiffness at the final stage of response in the tensile tests of composites were consistent with the results reported from the tensile test of textile fibers without the mortar. Moreover, clamping specimens by applying sufficient compressive force prevents slipping of fibers within the surrounding mortar.

Keywords


References
1. Bagheri, M., Chahkandi, A., and Jahangir, H. Seismic reliability analysis of RC frames rehabilitated by glass ber-reinforced polymers", Int. J. Civ. Eng., 17(11),
pp. 1785{1797 (2019).
2. Kouris, L.A.S. and Trianta llou, T.C. State-of-theart on strengthening of masonry structures with textile reinforced mortar (TRM)", Constr. Build. Mater., 188, pp. 1221{1233 (2018).
3. Jahangir, H. and Esfahani, M.R. Investigating loading rate and bre densities in
uence on SRG - concrete bond behaviour", Steel Compos. Struct., 34(6), pp.
877{889 (2020).
4. Parisi, F., Menna, C., and Prota, A. Fabric- Reinforced Cementitious Matrix (FRCM) composites", In Failure Analysis in Biocomposites, Fibre-
Reinforced Composites and Hybrid Composites, Elsevier, pp. 199{227 (2019).
5. D'Ambrisi, A., Feo, L., and Focacci, F. Experimental analysis on bond between PBO-FRCM strengthening materials and concrete", Compos. Part B Eng., 44(1),
pp. 524{532 (2013).
6. Ombres, L. Analysis of the bond between Fabric Reinforced Cementitious Mortar (FRCM) strengthening systems and concrete", Compos. Part B Eng., 69, pp. 418{426 (2015).
7. Santandrea, M., Imohamed, I.A.O., Jahangir, H., Carloni, C., Mazzotti, C., De Miranda, S., Ubertini, F., and Casadei, P. An investigation of the debonding
mechanism in steel FRP- and FRCM-concrete joints", 4th Work. New Boundaries Struct. Concr., Capri Island, Italy, pp. 289{298 (2016).
8. Jahangir, H. and Esfahani, M.R. Numerical study of bond-slip mechanism in advanced externally bondedstrengthening composites", KSCE J. Civ. Eng., 22(11), pp. 4509{4518 (2018).
9. Mazzuca, S., Hadad, H.A., Ombres, L., and Nanni, A. Mechanical characterization of steel-reinforced grout for strengthening of existing masonry and concrete
structures", J. Mater. Civ. Eng., 31(5), p. 04019037 (2019).
10. Babaeidarabad, S., Loreto, G., and Nanni, A. Flexural strengthening of RC beams with an externally bonded fabric-reinforced cementitious matrix",
J. Compos. Constr., 18(5), p. 4014009 (2014).
11. Jiang, S., Guo, X., Xiong, Z., Cai, Y., and Zhu, S. Experimental studies on behaviour of tubular T-joints reinforced with grouted sleeve", Steel Compos. Struct.,
23(5), pp. 585{596 (2017).
12. Jahangir, H. and Esfahani, M.R. Strain of newly -  developed composites relationship in
exural tests (in Persian)", J. Struct. Constr. Eng., 5(3), pp. 92{107 (2018).
13. Thermou, G.E., Papanikolaou, V.K., Lioupis, C., and Hajirasouliha, I. Steel-Reinforced Grout (SRG) strengthening of shear-critical RC beams", Constr.
Build. Mater., 216, pp. 68{83 (2019).
14. Alabdulhady, M.Y. and Sneed, L.H. Torsional strengthening of reinforced concrete beams with externally bonded composites: A state of the art review",
Constr. Build. Mater., 205, pp. 148{163 (2019).
15. Strauss Rambo, D.A., de Andrade Silva, F., Toledo Filho, R.D., Ukrainczyk, N., and Koenders, E. Tensile strength of a calcium-aluminate cementitious composite
reinforced with basalt textile in a high-temperature environment", Cem. Concr. Compos., 70, pp. 183{193 (2016).
16. Leone, M., Aiello, M.A., Balsamo, A., Carozzi, F.G., Ceroni, F., Corradi, M., Gams, M., Garbin, E., Gattesco, N., Krajewski, P., Mazzotti, C., Oliveira,
D., Papanicolaou, C., Ranocchiai, G., Roscini, F., and Saenger, D. Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on
masonry substrate", Compos. Part B Eng., 127, pp. 196{214 (2017).
17. Jesse, F., Schicktanz, K., and Curbach, M. Obtaining characteristic material strength of Textile Reinforced Concrete (TRC) from laboratory tests", Proc. 9th Int. Symp. Ferrocem. (Ferro9), Bali, pp. 305{318 (2009).
18. Carozzi, F.G., Milani, G., and Poggi, C. Mechanical properties and numerical modeling of Fabric Reinforced Cementitious Matrix (FRCM) systems for strengthening of masonry structures", Compos.
Struct., 107, pp. 711{725 (2014).
19. De Santis, S., Carozzi, F.G., de Felice, G., and Poggi, C. Test methods for Textile Reinforced Mortar systems", Compos. Part B Eng., 127, pp. 121{132 (2017).
20. Ferrara, G., Coppola, B., Di Maio, L., Incarnato, L., and Martinelli, E. Tensile strength of
ax fabrics to be used as reinforcement in cement-based composites:
experimental tests under di erent environmental exposures", Compos. Part B Eng., 168, pp. 511{523 (2019).
21. Contamine, R., Si Larbi, A., and Hamelin, P. Contribution to direct tensile testing of textile reinforced concrete (TRC) composites", Mater. Sci. Eng. A, 528(29{30), pp. 8589{8598 (2011).
22. Carozzi, F.G. and Poggi, C. Mechanical properties and debonding strength of Fabric Reinforced Cementitious Matrix (FRCM) systems for masonry strengthening",
Compos. Part B Eng., 70, pp. 215{230 (2015).
23. Caggegi, C., Lanoye, E., Djama, K., Bassil, A., and Gabor, A. Tensile behaviour of a basalt TRM strengthening system: In
uence of mortar and reinforcing textile ratios", Compos. Part B Eng., 130, pp. 90{102 (2017).
24. Bellini, A., Bovo, M., and Mazzotti, C. Experimental and numerical evaluation of ber-matrix interface behaviour of di erent FRCM systems", Compos. Part B
Eng., 161, pp. 411{426 (2019).
25. Papantoniou, I.C. and Papanicolaou, C.G. Flexural behavior of one-way textile reinforced concrete (TRC)/reinforced concrete (RC) composite slabs",
15TH Eur. Conf. Compos. Mater., Venice, Italy (2012).
26. Tosun-Felekoglu, K., Felekoglu, B., Ranade, R., Lee, B.Y., and Li, V.C. The role of
aw size and ber distribution- on tensile ductility of PVA-ECC", Compos. Part B Eng., 56, pp. 536{545 (2014).
27. D'Antino, T. and Papanicolaou, C. Comparison between di erent tensile test set-ups for the mechanical characterization of inorganic-matrix composites",
Constr. Build. Mater., 171, pp. 140{151 (2018).
28. Li, B., Xiong, H., Jiang, J., and Dou, X. Tensile behavior of basalt textile grid reinforced Engineering Cementitious Composite", Compos. Part B Eng., 156,
pp. 185{200 (2019).
29. Caggegi, C., Carozzi, F.G., De Santis, S., Fabbrocino, F., Focacci, F., Hojdys, L., Lanoye, E., and Zuccarino, L. Experimental analysis on tensile and bond properties
of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures", Compos. Part B Eng., 127, pp. 175{195 (2017).
30. Pellegrino, C. and D'Antino, T. Experimental behaviour of existing precast prestressed reinforced concrete elements strengthened with cementitious composites",
Compos. Part B Eng., 55, pp. 31{40 (2013).
31. Donnini, J. and Corinaldesi, V. Mechanical characterization of di erent FRCM systems for structural reinforcement", Constr. Build. Mater., 145, pp. 565{
575 (2017).
32. Ascione, L., de Felice, G., and De Santis, S. A quali - cation method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems",
Compos. Part B Eng., 78, pp. 497{506 (2015).
33. Arboleda, D., Carozzi, F.G., Nanni, A., and Poggi, C. Testing procedures for the uniaxial tensile characterization of fabric-reinforced cementitious matrix
composites", J. Compos. Constr., 20(3), p. 04015063 (2016).
34. Donnini, J., Corinaldesi, V., and Nanni, A. Mechanical properties of FRCM using carbon fabrics with di erent coating treatments", Compos. Part B Eng.,
88, pp. 220{228 (2016).
35. Bernardi, P., Cerioni, R., Ferretti, D., Leurini, F., and Michelini, E. Experimental characterization of berreinforced cementitious mortar under tension", Frat.
ed Integrita Strutt., 13(48), pp. 97{104 (2019).
36. Dugas, M., Weise, S., Curbach, M., Hempel, R., O ermann, P., and Franzke, G. Force-deformation behaviour of tensile-loaded specimen made of textile
reinforced concrete", Text. Constr., 1, pp. 143{152 (1998).
37. Contamine, R., Larbi, A.S., and Hamelin, P. Contribution to direct tensile testing of textile reinforced concrete (TRC) composites", Mater. Sci. Eng. A,
528(29), pp. 8589{8598 (2011).
38. De Santis, S. and de Felice, G. Tensile behaviour of mortar-based composites for externally bonded reinforcement systems", Compos. Part B Eng., 68, pp.
401{413 (2015).
39. Cevallos, O.A. and Olivito, R.S. E ects of fabric parameters on the tensile behaviour of sustainable cementitious composites", Compos. Part B Eng., 69,
pp. 256{266 (2015).
40. De Santis, S., Ceroni, F., de Felice, G., Fagone, M., Ghiassi, B., Kwiecien, A., Lignola, G.P., Morganti, M., Santandrea, M., Valluzzi, M.R., and Viskovic, A.
Round robin test on tensile and bond behaviour of steel reinforced grout systems", Compos. Part B Eng., 127, pp. 100{120 (2017).
41. Carozzi, F.G., Bellini, A., D'Antino, T., de Felice, G., Focacci, F., Hojdys, L., Laghi, L., Lanoye, E., Micelli, F., Panizza, M., and Poggi, C. Experimental
 investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements", Compos. Part B Eng., 128, pp. 100{119
(2017).
42. Saidi, M. and Gabor, A. Use of distributed optical -- bre as a strain sensor in textile reinforced cementitious matrix composites", Measurement, 140, pp. 323{333 (2019).
43. De Santis, S. and de Felice, G. Steel reinforced grout systems for the strengthening of masonry structures", Compos. Struct., 134, pp. 533{548 (2015).
44. Hartig, J., Jesse, F., Schicktanz, K., and Hauler- Combe, U. In
uence of experimental setups on the apparent uniaxial tensile load-bearing capacity of textile
reinforced concrete specimens", Mater. Struct., 45(3), pp. 433{446 (2012).
45. Kim, H., Kim, G., Lee, S., Son, M., Choe, G., and Nam, J. Strain rate e ects on the compressive and tensile behavior of bundle-type polyamide berreinforced
cementitious composites", Compos. Part B Eng., 160, pp. 50{65 (2019).
46. D'Antino, T. and Papanicolaou, C. Mechanical characterization of textile reinforced inorganic-matrix composites", Compos. Part B Eng., 127, pp. 78{91 (2017).
47. Al-Gemeel, A.N., Zhuge, Y., and Youssf, O. Experimental investigation of basalt textile reinforced engineered cementitious composite under apparent
hoop tensile loading", J. Build. Eng., 23, pp. 270{279 (2019).
48. Signorini, C., Nobili, A., and Falope, F.O. Mechanical performance and crack pattern analysis of aged Carbon Fabric Cementitious Matrix (CFRCM) composites", Compos. Struct., 202, pp. 1114{1120 (2018).
49. Donnini, J., Chiappini, G., Lancioni, G., and Corinaldesi, V. Tensile behaviour of glass FRCM systems 1166 H. Jahangir and M.R. Esfahani/Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 1152{1166
with fabrics' overlap: Experimental results and numerical modeling", Compos. Struct., 212, pp. 398{411 (2019).
50. Hegger, J., Will, N., Curbach, M., and Jesse, F. Tragverhalten von textilbewehrtem Beton", Betonund Stahlbetonbau, 99(6), pp. 452{455 (2004).
51. Hartig, J., Jesse, F., Schicktanz, K., and Hauler- Combe, U. In
uence of experimental setups on the apparent
uniaxial tensile load-bearing capacity of textile reinforced concrete specimens", Mater. Struct., 45(3), pp. 433{446 (2012).
52. Li, V. Engineered Cementitious Composites (ECC) Material, Structural, and Durability Performance", In Concrete Construction Engineering Handbook, Nawy,
E.G., Ed., CRC Press: Boca Raton, FL, USA, pp. 34{ 47 (2008).
53. Kerakoll S.p.A.", www.kerakoll.com.
54. Carozzi, F.G. and Poggi, C. Mechanical properties and debonding strength of Fabric Reinforced Cementitious Matrix (FRCM) systems for masonry strengthening",
Compos. Part B Eng., 70, pp. 215{230 (2015).
55. Carozzi, F.G., Bellini, A., D'Antino, T., de Felice, G., Focacci, F., Hojdys, L., Laghi, L., Lanoye, E., Micelli, F., Panizza, M., and Poggi, C. Experimental
investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements", Compos. Part B Eng., 128, pp. 100{119 (2017).
56. AC434, I.C.C. Proposed acceptance criteria for masonry and concrete strengthening using ber-reinforced cementitious matrix (FRCM) composite systems", ICC-Evaluation Serv., Whittier, CA (2013).
Volume 28, Issue 3 - Serial Number 3
Transactions on Civil Engineering (A)
May and June 2021
Pages 1152-1166
  • Receive Date: 08 November 2019
  • Revise Date: 28 April 2020
  • Accept Date: 16 November 2020