[1] Cantwell, W.J. and Morton, J., “The impact resistance of composite materials—a review. Composites”, 22(5), pp.347-362(1991).
[2] Patil, S., Reddy, D.M. and Reddy, M., “Low velocity impact analysis on composite structures–A review”. In AIP Conference Proceedings 1, pp 09. AIP Publishing (2018).
[3] Olsson, R. “Analytical prediction of large mass impact damage in composite laminates”. Composites Part A: Applied Science and Manufacturing, 32(9), pp.1207-1215 (2001).
[4] Krishnamurthy, K.S., Mahajan, P. and Mittal, R.K., “Impact response and damage in laminated composite cylindrical shell”. Composite structures, 59(1), pp.15-36 (2003).
[5] He, W., Liu, J., Wang, S. and Xie, D., “Low- velocity impact response and post-impact flexural behavior of composite sandwich structures with corrugated cores”. Composite Structures, 189, pp.37- 53 (2018).
[6] Long, S., Yao, X., Wang, H. and Zhang, X., “Failure analysis and modeling of foam sandwich laminates under impact loading”. Composite Structures, 197, pp.10-20(2018).
[7] Hosseini, M., Khalili, S.M.R. and Fard, K.M., “Indentation analysis of in-plane prestressed composite sandwich plates: an improved contact law”. In Key Engineering Materials 471, pp. 1159-1164 (2011).
[8] Khalili, S.M.R., Rahmani, O., Malekzadeh Fard, K. and Thomsen, O.T., “High-order modeling of circular cylindrical composite sandwich shells with a transversely compliant core subjected to low velocity impact”. Mechanics of Advanced Materials and Structures, 21(8), pp.680-695(2014).
[9] Davar, A., Khalili, S.M.R. and Fard, K.M., “Assessment of different higher order theories for low-velocity impact analysis of fibre-metal laminate cylindrical shells”. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 228(3), pp.160-189 (2014).
[10] Kumar, K.S., Patil, S. and Reddy, D.M., “Modeling and Analysis of Low Velocity Impact on Composite Plate with Different Ply Orientations”. In International Conference on Innovation, Engineering and Entrepreneurship, pp. 515-521, Springer, Cham (2018).
[11] S. Patil and D. Mallikarjuna Reddy “Study of oblique low velocity impact on composite plate”. Materials Today: Proceedings, doi: 10.1016/j.matpr.2020.03.125 (2020).
[12] Fard, K.M., Ghorghabad, A.V., Azarnia, A.H. and Ghasemi, F.A., “High order impact elastic analysis of circular thick cylindrical sandwich panels subjected to multi-mass impacts”. Latin American Journal of Solids and Structures, 12(12), pp.2281- 2310 (2015).
[13] J.X. Zhang, Q.H. Qin, C.P. Xiang, T.J. “Wang Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact” Compos. Struct. 153, pp. 614–623(2016).
[14] Q.H. Qin, X.Y. Zheng, J.X. Zhang, C. Yuan, T.J. Wang “Dynamic response of square sandwich plates with a metal foam core subjected to low-velocity impact”, Int. J. Impact Eng. 111: pp. 222–235(2018).
[15] J.-S. Yang, L. Ma, K.-U. Schroder, Y.-L. Chen, S. Li, L.-Z. Wu, R. Schmidt “Experimental and numerical study on the modal characteristics of hybrid carbon fiber composite foam filled corrugated sandwich cylindrical panels”, Polymer Testing, doi: 10.1016/j.polymertesting.2018.03.040 (2018).
[16] Jianxun Zhang, Kang Liu, Yang Ye, Qinghua Qin “Low-velocity impact of rectangular multilayer sandwich plates Thin-Walled Structures Thin-Walled Structures” 141: pp. 308–318 (2019).
[18] Vignjevic, R., Campbell, J., Hughes, K., OrÅ‚owski, M., Garcea, S., Withers, P., & Reed, J. “Soft body impact resistance of composite foam core sandwich panels with unidirectional corrugated and tubular reinforcements”. International Journal of Impact Engineering, 132, 103320(2019).
[19] Wang, E., Li, Q., & Sun, G. “Computational analysis and optimization of sandwich panels with homogeneous and graded foam cores for blast resistance”. Thin-Walled Structures, 147, 106494(2020).
[20] Zhang, J., Qin, Q., Xiang, C., Wang, Z. and Wang, T.J. “A theoretical study of low-velocity impact of geometrically asymmetric sandwich beams”. International Journal of Impact Engineering, 96, pp.35-49 (2016).
[21] Zhang, J., Qin, Q., Xiang, C. and Wang, T.J., “Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact”. Composite Structures, 153, pp.614-623(2016).
[22] Pourmoayed, A. R., Fard, K. M., & Shahravi, M “Vibration analysis of a cylindrical sandwich panel with flexible core using an improved higher-order theory”. Latin American Journal of Solids and Structures, 14(4), 714-742. (2017).
[23] Khanjani, M., Shakeri, M., & Sedighi, M. “A parametric study on the stress analysis and transient response of thick-laminated-faced cylindrical sandwich panels with transversely flexible core”. Aerospace Science and Technology, 48, 1-20 (2016).
[24] Mikhasev, G.I., Eremeyev, V.A., Wilde, K. and Maevskaya, S.S., “Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core”. Journal of Intelligent Material Systems and Structures, 30(18-19), pp.2748-2769 (2019).
[25] Malekzadeh Fard, K., Gholami, M., Reshadi, F. and Livani, M. “Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer”. Journal of Sandwich Structures & Materials, 19(4), pp.397-423 (2017).
[26] Yahaya, M.A., Ruan, D., Lu, G. and Dargusch, M.S., “Response of Aluminium honeycomb sandwich panels subjected to foam projectile impact–An experimental study”. International Journal of Impact Engineering, 75, pp.100-109 (2015).
[27] Khalili, S. M. R., Rahmani, O., Malekzadeh Fard, K., & Thomsen, O. T. “High-order modeling of circular cylindrical composite sandwich shells with a transversely compliant core subjected to low velocity impact”. Mechanics of Advanced Materials and Structures, 21(8), 680-695(2014).
[28] Zhou, J., Hassan, M.Z., Guan, Z. and Cantwell, W.J., “The low velocity impact response of foam-based sandwich panels”. Composites science and Technology, 72(14), pp.1781-1790 (2012).
[29] Joladarashi, S., & Kulkarni, S. M. “Comparative study of damage behavior of synthetic and natural fiber-reinforced brittle composite and natural fiber-reinforced flexible composite subjected to low-velocity impact” Scientiairanica, 27(1), 341-349 (2020).
[30] Joladarashi, S., & Kulkarni, S. M. “Investigation on effect of using rubber as core material in sandwich composite plate subjected to low velocity normal and oblique impact loading”. Scientiairanica, 26(2), 897-907(2019).
[31] Chen, G., Zhang, P., Liu, J., Cheng, Y., & Wang, H “Experimental and numerical analyses on the dynamic response of aluminum foam core sandwich panels subjected to localized air blast loading”. Marine Structures, 65, 343-361. (2019).
[32] Fard, K. M., Ghorghabad, A. V., Azarnia, A. H., & Ghasemi, F. A. “High order impact elastic analysis of circular thick cylindrical sandwich panels subjected to multi-mass impacts”. Latin American Journal of Solids and Structures, 12(12), 2281-2310 (2015).