New insight into the performance analysis of flow-electrode capacitive deionization by varying the operation voltage

Document Type : Article

Authors

1 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

2 Separation and Conversion Materials Laboratory, Korea Institute of Energy Research, Daejeon, Republic of Korea

Abstract

In the flow-electrode capacitive deionization (FCDI), the highly activated porous carbon electrodes of slurry phase flows through the channels of current collectors and adsorbs the salt ions when a voltage is applied. In this study, the effect of voltage on the performance of a FCDI cell is experimentally investigated. The voltage is applied on the top corner of a FCDI cell (Vapply) and simultaneously the voltage of central cell (Vcell) is measured. The experiments were conducted by applying voltages from 0.6 to 3.9 V. The experimental results show that the difference between Vapply and Vcell is a function of salt concentrations of the feed water. The higher voltages (Vapply>1.2V) can be used for increasing the salt removal efficiency (E) for higher salt water concentrations without electrolysis. Also, the results show that E increases along with the applied voltage. A series of pH measurements were done in regard to investigation of electrolysis point of the setup.

Keywords


References:
1.    Zhang C., He D., Ma J., et al., “Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review”, Water Research, 128, pp. 314-330 (2018).
2.    Suss M. E., Porada S., Sun X., et al., “Water desalination via capacitive deionization: what is it and what can we expect from it?”, Energy Environ. Sci., 8, pp. 2296 (2015).
3.    Porada S., Zhao R., van der Wal A., et al., “Review on the science and technology of water desalination by capacitive deionization”, Prog. In Mater. Sci., 58, pp. 1388–1442 (2013).
4.    Laxman Kunjali K., “WATER DESALINATION BY NANOSTRUCTURING ENHANCED CONTROL OF CAPACITIVE DEIONIZATION”, PhD thesis, Department of Electrical and Computer Engineering College of Engineering, Sultan Qaboos University, Sultanate of Oman, (2015).
5.    Laxman Kunjali K., Al Gharibi L., Dutta J., “Capacitive deionization with asymmetric electrodes: Electrode capacitance vs electrode surface area, Electrochimica Acta, 176, pp. 420–425 (2015).
6.    Zou L., Morris G., Qi D., “Using activated carbon electrode in electrosorptive deionisation of brackish water”. Desalination, 225, pp. 329−340 (2008).
7.    Xu P., Drewes J. E., Heil D., et al., “Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology”. Water Res., 42, pp. 2605−2617 (2008).
8.    Porada S., Weinstein L., Dash R., et al., “Water desalination using capacitive deionization with microporous carbon electrodes”, ACS Appl. Mater. Interfaces, 4, pp. 1194−1199 (2012). 
9.    Tsouris C., Mayes R., Kiggans J., et al., “Mesoporous carbon for capacitive deionization of saline water”, Environ. Sci. Technol., 45, pp. 10243−10249 (2011).
10.    Wang L., Wang M., Huang Z.-H., et al., “Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes:, J. Mater. Chem. 21, pp. 18295−18299 (2011).
11.    Wang H., Zhang D., Yan T., et al., “Graphene prepared via a novel pyridine−thermal strategy for capacitive deionization”, J. Mater. Chem., 22, pp. 23745−23748 (2012).
12.    Kwak N.-S., Koo J. S., Hwang T. S., et al., “Synthesis and electrical properties of NaSS−MAA−MMA cation exchange membranes for membrane capacitive deionization (MCDI)”, Desalination, 285, pp. 138−146  (2012).
13.    Choi Y. W., Lee M. S., Yang T. H., et al., “Ion Exchange Membrane for Flow- Electrode Capacitive Deionization Device and Flow-Electrode Capacitive Deionization Device Including the Same”, Patent, EP 2857442, (2015).
14.    Zhao R., Biesheuvel P. M., Van der Wal A., “Energy consumption and constant current operation in membrane capacitive deionization”, Energy Environ. Sci., 5, pp. 9520−9527 (2012).
15.    Suss M. E., Baumann T. F., Bourcier W. L., et al., “Capacitive desalinationwith flow-through electrodes”, Energy Environ. Sci., 5, pp. 9511−9519 (2012).
16.    Porada S., Sales B. B., Hamelers H. V. M., et al., “Water Desalination with Wires”, J. Phys. Chem. Lett., 3, pp. 1613−1618 (2012).
17.    Xu X.T., Allah A.E., Wang C., et al., “Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination”, Chemical Engineering Journal, 362, pp. 887-896 (2019).
18.    Liu Y., Xu X., Lu T., et al., “Nitrogen-doped electrospun reduced graphene oxide–carbon nanofiber composite for capacitive deionization”, RSC Advances 5 (43), pp. 34117-34124 (2015). 
19.    Zhang J., Yan T., Fang J., et al., “Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal–organic frameworks”, Environmental Science: Nano, Accepted Manuscript, DOI : 10.1039/C9EN01216H (2020).
20.    Xu X.,    Tan H.,   Wang Z.,   et al., “Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination”, Environmental Science: Nano, 6 (3), pp. 981-989 (2019).
21.    Xu X., Liu Y., Wang M., et al., “Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization”, Electrochimica Acta, 193, pp. 88-95 (2016).
22.     Xu X.,  Wang M., Liu Y., et al., “Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization”, Journal of Materials Chemistry A, 4 (15), pp. 5467-5473 (2016).
23.    Wang M., Xu X., Liu Y., et al., “From metal-organic frameworks to porous carbons: A promising strategy to prepare high-performance electrode materials for capacitive deionization”, Carbon, 108, pp. 433-439, (2016).
24.    Wang M., Xu X., Tang J.,  et al., “High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches”, Chemical Communications, 53 (78), pp. 10784-10787 (2017).
25.    Wang Z., Xu X., Kim J., et al., “Nanoarchitectured metal–organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization”, Materials Horizons, 6, pp. 1433-1437 (2019).
26.    Xu X., Li C., Wang C., et al., “Three-Dimensional Nanoarchitecture of Carbon Nanotube-Interwoven Metal–Organic Frameworks for Capacitive Deionization of Saline Water”, ACS Sustainable Chemistry & Engineering, 7 (16), pp. 13949-13954 (2019).
27.    Jeon S. i., Park H. r., Yeo J. g., et al., “Desalination via a new membrane capacitivedeionization process utilizing flow-electrodes”, Energy Environ. Sci., 6, pp. 1471−1475 (2013).
28.    Yang S. C., Jeon S., Kim H., et al., “Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology”, ACS Sustainable Chem. Eng., 4, pp. 4174–4180 (2016). 
29.    Cho Y., Lee K. S., Yang S. C., et al., “A novel three-dimension system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization”, Energy Environ Sci., 10, pp. 1746-1750 (2017).
30.    Xu X., Wang M.,  Liu Y.,  et al., “Ultrahigh Desalinization Performance of Asymmetric Flow-Electrode Capacitive Deionization Device with an Improved Operation Voltage of 1.8 V”, ACS Sustainable Chemistry & Engineering, 5 (1), pp. 189-195 (2016).
31.    Wang M., Hou S., Liu Y., et al., “Capacitive neutralization deionization with flow electrodes”, Electrochimica Acta, 216, pp. 211-218 (2016).
32.    Hatzell K. B., Iwama E., Ferris A., et al., “Capacitive deionization concept based on suspension electrodeswithout ion exchange membranes”, Electrochem. Commun. 43, pp. 18−21 (2014).
33.    Porada S., Weingarth D., Hamelers H. V. M., et al., “Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation”, J. Mater. Chem. A, 2, pp. 9313−9321  (2014).
34.    Rommerskirchen A., Gendel Y., Wessling M., “Single module flow-electrode capacitive deionization for continuous water desalination”, Electrochem. Commun., 60, pp. 34−37 (2015).
35.    Liang P., Sun X., Bian Y., et al., “Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode”, Desalination, 420, pp. 63–69 (2017).
36.    Nikfar M., Alemrajabi A., Choo K. Y., et al., “Experimental study on the structure of spacer in a Flow-electrode Capacitive Deionization”, Desalination and water treatment, 184, pp. 86–93 (2020).
37.    Nikfar M., Alemrajabi  A., Kim D. K., “A review study on the capacitive desalination set, and experimental feasibility study on coupling of FCDI and solar energy”, Journal of Energy engineering & management, In Persian, In press (2020).
38.    Jeon S., Yeo J. G., Yang S. C., et al., “Ion storage and energy recovery of a flowelectrode capacitive deionization process”, Journal of Materials Chemistry A, 2, pp. 6378–6383 (2014).
39.    Yang S. C., Choi J., Yeo J. G., et al., “Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration”, Environ. Sci. Technol, 50, pp. 5892-9 (2016).
40.    Park H. R., Choi J., Yang S. C., et al., “Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization”, The Royal Society of Chemistry, 6, pp. 69720 (2016).
Volume 28, Issue 3 - Serial Number 3
Transactions on Chemistry and Chemical Engineering (C)
June 2021
Pages 1421-1427
  • Receive Date: 28 May 2019
  • Revise Date: 08 September 2020
  • Accept Date: 02 November 2020