Anisotropic finite element modelling of traumatic brain injury: A voxel-based approach

Document Type : Article

Authors

1 Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

2 - Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran. - RCBTR, Tehran University of Medical Sciences, Tehran, Iran.

3 Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS),Tehran, Iran

Abstract

A computationally efficient 3D human head finite element model was constructed. The model includes the mesoscale geometrical details of the brain including the distinction between white and grey matter, sulci and gyri, ventricular system, foramen magnum, and the cerebrospinal fluid. We incorporate the heterogeneity and anisotropy from diffusion tensor imaging data by applying a one-to-one voxel-based correspondence between diffusion voxels and finite elements. The voxel resolution of the model was optimized to obtain a trade-off between reduced computational cost and higher geometrical details. Three sets of constitutive material properties were extracted from the literature to validate the model against intra-cranial pressure and relative motion test data within the brain. The model exhibited good agreement at pressure tests in frontal and occipital lobes with peak pressure magnitudes of only 8% and 6% higher which occurred 0.5-3 ms earlier than those of the experimental curves at coup and countercoup sites, respectively. In addition, the evaluation of the relative displacement at six locations within the brain indicated acceptable agreement with experimental data, with our model’s performance exhibiting the highest overall score compared to several previous models by using the correlation and analysis rating method.

Keywords


References
1. Galgano, M., Toshkezi, G., Qiu, X., Russell, T.,Chin, L., and Zhao, L.R. \Traumatic brain injury:Current treatment strategies and future endeavors",H. Hoursan et al./Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 1271{1283 1281Cell Transplantation, 26(7), pp. 1118|1130 (2017).DOI:10.1177/09636897177141022. Nahum, A.M., Smith, R., and Ward, C.C. \Intracranialpressure dynamics during head impact", SAETechnical Paper (1977).
3. Hardy, W., Foster, C., Mason, M., Yang, K., King,A., and Tashman, S. \Investigation of head injurymechanisms using neutral density technology and highspeedbiplanar X-ray", Stapp Car Crash J., 45, pp.337{368 (2001).4. Hardy, W., Mason, M., Foster, C., Shah, C., Kopacz,J., Yang, K., King, A., Bishop, J., Bey, M., Anderst,W., and Tashman, S. \Study of the response of thehuman cadaver head to impact", Stapp Car Crash J.,51, pp. 17{80 (2007).5. Miller, L.E., Urban, J., and Stitzel, J.D. \An anatomicallyaccurate nite element brain model: development,validation and comparison to existing models"(2016).6. Zhang, L.Y., Yang, K.H., and King, A.I. \A proposedinjury threshold for introduction mild traumatic braininjury", J. Biomech. Eng., 126, pp. 226{236 (2004).7. Mao, H., Zhang, L., Yang, K.H., and King, A.I.\Application of a nite element model of the brain tostudy traumatic brain injury mechanisms in the rat",Stapp Car Crash J., 50, pp. 583{600 (2006).8. Kleiven, S. \Predictors for traumatic brain injuriesevaluated through accident reconstructions", StappCar Crash J., 51, pp. 81{114 (2007).9. Takhounts, E., Hasija, V., Ridella, S., et al. \Investigationof traumatic brain injury using the nextgeneration of simulated injury monitor (simon) niteelement head model", Stapp Car Crash J., 52, pp. 1{32(2008).10. Hoursan, H., Ahmadian, M.T., and Naghibi Beidokhti,H. \Modelling and analysis of the e ect ofangular velocity and acceleration on brain strain eldin traumatic brain injury", ASME 2013 InternationalMechanical Engineering Congress & ExpositionIMECE2013 (2013).11. Giordano, C., Cloots, R., van Dommelen, J., Kleiven,S., and Geers, M. \The inuence of anisotropy on braininjury prediction", J. Biomech., 47, pp. 1052{1059(2014). Doi: 10.1016/j. jbiomech.2013.12.03612. Sha ee, A., Ahmadian, M.T., Hoursan, H., and HoviatTalab, M. \E ect of linear and rotational accelerationon human brain", Modares Mechanical Engineering,15(7), pp. 248{260 (2015).13. Hoursan, H., Ahmadian, M.T., Kazemiasfeh, R., andBarari, A. \On the validity extent of linear viscoelasticmodels of human brain", CSME-SCGM2018 (2018).14. Afshari, J., Haghpanahi, M., Kalantarinejad, R., andRouboa, A. \Investigating the e ects of impact directionsto improve head injury index", Scientia Iranica,Trans. B, 27(4), pp. 1867{1877 (2019).15. Razaghi, R., Biglari., H., and Karimi, A. \Riskof rupture of the cerebral aneurysm in relation totraumatic brain injury using a patient-speci c uidstructureinteraction model", Computer Methods andPrograms in Biomedicine, 176, pp. 9{16 (2019). DOI:10.1016/j.cmpb.2019.04.01516. Hajiaghamemar, M., Wu, T., Panzer, M.B., andMargulies, S.S. \Embedded axonal ber tracts improve nite element model predictions of traumatic braininjury", Biomech Model Mechanobiol, 19(3), pp. 1109{1130 (2020). DOI: 10.1007/s10237-019-01273-817. Hoursan, H., Farahmand, F., and Ahmadian, M.T.\A three-dimensional statistical volume element forhistology informed micromechanical modeling of brainwhite matter", Annals of Biomedical Engineering,48(4), pp. 1337{1353 (2020).18. Leemans, A., Jeurissen, B., Sijbers, J., and Jones, D.K.\Explore DTI: A graphical toolbox for processing,analyzing, and visualizing di usion MR data", In 17thAnnual Meeting of Intl Soc. Mag Reson. Med., p. 3537,Hawaii, USA (2009).19. Sepehrband, F., Alexander, C.D., Clark, K.A., Kurniawan,N.D., Yang, Z., and Reutens, D.C. \Parametricprobability distribution functions for axon diameters ofcorpus callosum", Front. Neuroanat, 10, p. 59 (2016).20. Velardi, F., Fraternali, F., and Angelillo, M.\Anisotropic constitutive equations and experimentaltensile behavior of brain tissue", Biomech. Model.Mechanobiol., 5, pp. 53{61 (2006).21. Rashid, B., Destrade, M., and Gilchrist, M. \Mechanicalcharacterization of brain tissue in tension atdynamic strain rates", Journal of the Mechanical Behaviorof Biomedical Materials, 33, pp. 43{54 (2012).10.1016/j.jmbbm.2012.07.01522. Jin, X., Zhu, F., Mao, H., Shen, M.C., and Yang,
K.H. \A comprehensive experimental study on materialproperties of human brain tissue", Journal ofBiomechanics, 46(16), pp. 2795{801 (2013).23. Budday, S., Sommer, G., Holzapfel, G.A., Steinmann,P., and Kuhl, E. \Viscoelastic parameter identi cationof human brain tissue", Journal of the MechanicalBehavior of Biomedical Materials, 74, pp. 463{476,ISSN 1751-6161 (2017).24. Giordano, C., Zappala, S., and Kleiven, S.\Anisotropic nite element models for brain injuryprediction: the sensitivity of axonal strain to whitematter tract inter-subject variability", Biomechanicsand Modeling in Mechanobiology, 16, pp. 1269{1293(2017). DOI:10.1007/s10237-017-0887-525. Cloots, R.J., van Dommelen, J.A., Nyberg, T.,Kleiven, S., and Geers, M.G. \Micromechanics ofdi use axonal injury: Inuence of axonal orientationand anisotropy", Biomech Model Mechanobiol, 10(3),pp. 413{422 (2011). DOI: 10.1007/s10237-010-0243-5.Epub 2010 Jul 16. PMID: 20635116.1282 H. Hoursan et al./Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 1271{1283
26. Zhou, Z, Li, X, and Kleiven, S. \Biomechanics of acutesubdural hematoma in the elderly: A
uid-structureinteraction study", J Neurotrauma, 36(13), pp. 2099{2108 (2019). DOI: 10.1089/neu.2018.6143. Epub 2019Mar 13. PMID: 30717617.27. Fernandes, F., Tchepel, D., Alves de Sousa, R.,and Ptak, M. \Development and validation of anew nite element human head model", EngineeringComputations, 35(1), pp. 477{496 (2018).https://doi.org/10.1108/EC-09-2016-032128. Saboori, P. and Sadegh, A. \Material modeling of thehead's subarachnoid space", Scientia Iranica, 18(6),pp. 1492{1499, ISSN 1026-3098 (2011).29. Kleiven, S. and von Holst, H. \Consequences ofhead size following trauma to the human head", J.Biomech., 35, pp. 153{160 (2002)30. Johnson, H., von Holst, H., and Kleiven, S.\Automatic generation and validation of patientspeci c nite element head models suitable forcrashworthiness analysis", International Journal ofCrashworthiness, 14(6), pp. 555{563 (2009). DOI:10.1080/1358826090289570831. Karimi, A., Rahmati, S.M., and Razaghi, R.\A combination of experimental measurement,constitutive damage model, and di usion tensorimaging to characterize the mechanical propertiesof the human brain", Comput Methods BiomechBiomed Engin., 20(12), pp. 1350-1363(2017).DOI:10.1080/10255842.2017.136269432. Reuter M., Schmansky, N.J., Rosas, H.D., and Fischl,B. \Within-subject template estimation for unbiasedlongitudinal image analysis", Neuroimage, 61(4), pp.1402{1418 (2012).33. Holzapfel, G.A., Gasser, T.C., and Ogden, R.W. \Anew constitutive framework for arterial wall mechanicsand a comparative study of material models", Journalof Elasticity, 61, pp. 1{48 (2000).34. Carlsen, R.W. and Daphalapurkar, N.P. \The importanceof structural anisotropy in computational modelsof traumatic brain injury", Front Neurol., 6(28), pp.6{28 (2015). DOI:10.3389/fneur.2015.0002835. Wright, R.M. and Ramesh, K.T. \An axonal straininjury criterion for traumatic brain injury", Biomech.Model. Mechanobiol., 11, pp. 245{260 (2012).36. Hoursan, H., Farahmand, F., and Ahmadian, M.A.\Novel procedure for micromechanical characterizationof white matter constituents at various strainrates", Scientia Iranica, Transactions on MechanicalEngineering (B), 27(2), pp. 784{794 (2020). DOI:10.24200/sci.2018.50940.192837. Fung, Y., Biomechanics: Mechanical Properties ofLiving Tissues, Springer-Verlag, New York (1981).38. King, A.I., Yang, K.H., Zhang, L., Hardy, W., andViano, D.C., Is Head Injury Caused by Linear orAngular Acceleration, Bioengineering Center, WayneState University, pp. 1{12 (2003).39. Gehre, C., Gades, H., and Wernicke, P. \Objectiverating of signals using test and simulation responses",Pap. Present 21st ESV Conf. (Jun 15, 2009).40. Ji, S., Ghadyani, H., Bolander, R.P., et al. \Parametriccomparisons of intracranial mechanical responses fromthree validated nite element models of the humanhead", Ann. Biomed. Eng. Jan., 42(1), pp. 11{24(2014).41. Pearce, C.W. and Young, P.G. \On the pressureresponse in the brain due to short durationblunt impacts", PloS One, 9(12), e114292 (2014).DOI:10.1371/journal.pone.011429242. Bhateja, A., Shukla, D., Devi, B.I., and Sastry Kolluri,V. \Coup and contrecoup head injuries: Predictorsof outcome", Indian. J. Neurotrauma, 6, pp. 115{118(2009).43. Hoursan, H. and Ahmadian, M.T. \Dynamic behaviourof Ox tibial and femoral bones: A comparisonwith human bones", Proceedings of theASME 2015 International Design Engineering TechnicalConferences and Computers and Informationin Engineering Conference, 8, 27th Conferenceon Mechanical Vibration and Noise, Boston,Massachusetts, USA, V008T13A053, ASME (2015).https://doi.org/10.1115/DETC2015-4655544. Newman, J.A., Beusenberg, M.C., Shewchenko, N.,Withnallm, C., and Fournier, E. \Veri cation ofbiomechanical methods employed in a comprehensivestudy of mild traumatic brain injury and the e ectivenessof American football helmets", J. Biomech.,38(7), pp. 1469{1481 (2005).45. Johnson, H. and Kleiven, S. \Dynamic response of thebrain with vasculature: a three-dimensional computationalstudy", Journal of Biomechanics, 40(13), pp.3006{12 (2007).
Volume 28, Issue 3 - Serial Number 3
Transactions on Mechanical Engineering (B)
May and June 2021
Pages 1271-1283
  • Receive Date: 22 September 2019
  • Revise Date: 31 July 2020
  • Accept Date: 10 October 2020