References:
1. Nukiyama, S. "The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure", Japanese Society of Mechanical Engineering, 9(12), pp. 1419-1433 (1966).
2. Aznam, S.M., Mori, S., Sakakibara, F., and Okuyama, K. "Effects of heater orientation on critical heat flux for nanoparticle-deposited surface with honeycomb porous plate attachment in saturated pool boiling of water", International Journal of Heat and Mass Transfer, 102, pp. 1345-1355 (2016).
3. Pournaderi, P. and Pishevar, A.R. "Numerical simulation of oblique impact of a droplet on a surface in the film boiling regime", Scientia Iranica, 21(1), p. 119 (2014).
4. Rana, Sh., Nawaz, M., and Haider Qureshi, I. "Numerical study of hydrothermal characteristics in nano fluid using KKL model with Brownian motion", Scientia Iranica, 26(3), pp. 1931-1943 (2019).
5. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S. "Review of boiling heat transfer enhancement on micro/nanostructured surfaces", Experimental Thermal and Fluid Science, 66, pp. 173-196 (2015).
6. Kim, J., Jun, S., Laksnarain, R., and You, S.M. "Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability", International Journal of Heat and Mass Transfer, 101, pp. 992-1002 (2016).
7. Mohammadi. M. and Khayat, M. "Experimental investigation of the effect of roughness orientation of surface on motion of bubbles and critical heat flux", Modares Mechanical Engineering, 17, pp. 531-541 (2018).
8. Choi, S.U.S. and Eastman, J.A.A. "Enhancing thermal conductivity of fluids with nanoparticles", in ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA (1995).
9. Vafaei, S. "Nanofluid pool boiling heat transfer phenomenon", Powder Technology, 277, pp. 181-192 (2015).
10. Wen, D. and Ding, Y. "Experimental investigation into the pool boiling heat transfer of aqueous based -alumina nanofluids", Journal of Nanoparticle Research, 7, pp. 265-274 (2005).
11. Das, S.K., Putra, N., and Roetzel, W. "Pool boiling of nano-fluids on horizontal narrow tubes", International Journal of Multiphase Flow, 29(8), pp. 1237-1247 (2003).
12. Holman, J.P., Experimental Methods for Engineers, Hill, New York: McGraw-7th Ed. (2001).
13. Amiri, A., Shanbedi, M., Amiri, H., Zeinali Heris, S., Kazi, S.N., Chew, B.T., and Eshghi, H. "Pool boiling heat transfer of CNT/water nanofluid", Applied Thermal Engineering, 71(1), pp. 450-459 (2014).
14. Kim, H.D., Kim, J., and Kim, M.H. "Experimental studies on CHF characteristics of nano-fluids at pool boiling", International Journal of Multiphase Flow, 33, pp. 691-706 (2007).
15. Chopkar, M., Das, A.K., Manna, I., and Das, P.K. "Pool boiling heat transfer characteristics of ZrO2- water nanofluids froma
at surface in a pool", Journal of Heat and Mass Transfer, 44, pp. 999-1004 (2008).
16. Trisaksri, V. and Wongwises, S. "Nucleate pool boiling heat transfer of TiO2-R141b nanofluids", International Journal of Heat and Mass Transfer, 52, pp. 1582-1588 (2009).
17. Kathiravan, R., Kumar, R., Gupta, A., and Chandra, R. "Preparation and pool boiling characteristics of copper nano fluids over a at plate heater", International Journal of Heat and Mass Transfer, 53(9), pp. 1673- 1681 (2010).
18. Stutz, B., Morceli, C.H.S., Silva, M.F., Cioulachtjian, S., and Bonjour, J. "Influence of nanoparticle surface coating on pool boiling", Experimental Thermal Fluid Science, 35, pp. 1239-1249 (2011).
19. Kole, M. and Dey, T.K. "Investigations on the pool boiling heat transfer and critical heat flux of ZnOethyleneglycol nano fluids", Apply Thermal Engineering, 37, pp. 112-119 (2012).
20. Kamatchi, R., Venkatachalapathy, S., and Nithya, C. "Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids", Heat and Mass Transfer, 52(11), pp. 2357-2366 (2016).
21. Sarafraz, M.M., Hormozi, F., Silakhori, M., and Peyghambarzadeh, S.M. "On the fouling formation of functionalized and non-functionalized carbon nano tube nano-fluids under pool boiling condition", Apply Thermal Engineering, 95, pp. 433-444 (2016).