Modeling for radiated Marangoni convection flow of magneto-nanoliquid subject to activation energy and chemical reaction

Document Type : Article

Authors

1 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

2 - Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan - Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University P. O. Box 80203, Jeddah 21589, Saudi Arabia

3 Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4 Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad

Abstract

Simultaneous impacts of non-linear radiation and magnetohydrodynamics in Marangoni convection nanoliquid are addressed Novel aspects of activation energy and space dependent heat source are addressed. Nanoliquid attributes Brownain movement and thermophoresis diffusion. NDSolve base shooting technique is employed for the numerical simulation. Aspects of various embedded variables are focused on velocity, heat and mass transport distributions via graphical interpretations. Moreover temperature gradient at the surface is estimated and analyzed. Our study identified that exponential based space heat source (ESHS) parameter significantly enhanced the thermal field. Activation energy and temperature difference parameters decrease the nanoparticles concentration. Moreover temperature gradient enhances for higher Marangoni ratio parameter, Hartmann number, dimensionless activation energy and thermophoresis parameter.

Keywords


References:
[1].    Choi, S.U.S., “Enhancing thermal conductivity of fluids with nanoparticle”, ASME Int. Mech. Eng. Cong. Exp., 66, pp. 99-105 (1995).
[2].    Hu, Z., Lu, W. and Thouless, M.D. “Slip and wear at a corner with Coulomb friction and an interfacial strength”, Wear, 338, pp. 242—251 (2015) .
[3].    Hu, Z., Thouless, M.D.  and Lu, W. “Effects of gap size and excitation frequency on the vibrational behavior and wear rate of fuel rods”, Nuclear. Eng. Design, 308, pp. 261—268 (2016).
[4].    Imtiaz, M., Hayat, T. and Alsaedi, A. “Flow of magneto nanofluid by a radiative exponentially stretching surface with dissipation effect”, Adv. Powder Technol., 27, pp. 2214—2222 (2016).
[5].    Turkyilmazoglu, M., “Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids”, Chem. Eng. Sci., 84, pp. 182-187 (2012).
[6].    Zheng, L., Zhang, C., Zhang, X., et al., “Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium”, J. Franklin Inst., 350, pp.  990-1007 (2013).
[7].    Sheikholeslami, M., Hayat, T. and Alsaedi, A. “On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders”, Int. J. Heat Mass Transfer, 115, pp. 981—991 (2017).
[8].    Hsiao, K. “Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet”, Appl. Thermal Eng. 98, pp. 850-861 (2016).
[9].    Shehzad, S.A., Hussain, T., Hayat, T., et al., “Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation”, J. Central South Univ., 22, pp. 360—367 (2015).
[10].    Rahman, S. U., Ellahi, R., Nadeem, S., et al., “Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis”, J. Mol. Liq. 218, pp. 484-493 (2016).
[11].    Hayat, T., Ullah, I., Muhammad, T., et al., “Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions”, Chin. Phys. B, 25, pp. 074701 (2016).
[12].    Sandeep, N. “Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles”, Adv. Powder Techn., 28, pp. 865-875 (2017).
[13].    Hayat, T., Muhammad, K., Farooq, M., et al.,” Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface”, AIP Advances 6, pp. 015214 (2016).
[14].    Amala, S., and Mahanthesh, B. “Hybrid nanofluid flow over a vertical rotating plate in the presence of Hall current, nonlinear convection and heat absorption”, J. Nanofluids, 7, pp. 1138-1148 (2018)     .
[15].    Muhammad, T., Lu, D.C., Mahanthesh, B., et al., “Significance of Darcy-Forchheimer porous medium in nanofluid through carbon nanotubes”, Commun. Theor. Phys., 70, pp. 361 (2018).
[16].    Shruthy, M., and Mahanthesh, B., “Rayleigh-Bénard convection in Casson and hybrid nanofluids: An analytical investigation”, J. Nanofluids, 8, pp. 222-229  (2019).
[17].    Ashlin, T.S., and Mahanthesh, B., “Exact solution of non-coaxial rotating and non-linear convective flow of Cu-Al2O3-H2O hybrid nanofluids over an infinite vertical plate subjected to heat source and radiative heat”, J. Nanofluids, 8, pp. 781-794 (2019).
[18].    Hayat, T., Ullah, I., Alsaedi, A., et al., “Three-dimensional mixed convection flow of Sisko nanoliquid”, Int. J. Mech. Sci., 133, pp.  273-282 (2017).
[19].    Si, X., Li, H., Zheng, L., et al., “A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate”, Int. J. Heat Mass Transfer, 105, pp. 350-358 (2017).
[20].    Khan, W.A., Khan, Z.H., and Haq, R.U., “Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux”, Eur. Phys. J. Plus, 130, pp. 86 (2015).
[21].    Wu, W., Wu, Z., Yu, T., et al., “Recent Progresses on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications”, Sci. Technol. Adv. Mater, 16, pp.  023501 (2015).
[22].    Gireesha, B.J., Gorla, R.S.R., and Mahanthesh, B., “Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet”, J. Nanofluids, 4, pp. 474—484 (2015).
[23].    Hayat, T., Ullah, I., Alsaedi, A., et al., “MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness”, Results in Phys., 7, pp. 189—196 (2017).
[24].    Hayat, T., Saleem, A., Tanveer, A., et al., “Numerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall properties”, Int. J. Heat Mass Transfer., 114, pp. 1181—1187 (2017).
[25].    Hayat, T., Ullah, I., Muhammad, T., et al., “Magnetohydrodynamic (MHD) three-dimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface”, J. Mol. Liq., 220, pp. 1004-1012 (2016).
[26].    Napolitano, L.G. “Microgravity fluid dynamics, in: 2nd Levitch Conference”, Washington, (1978).
[27].    Napolitano, L.G. “Marangoni boundary layers, in: Proc. 3rd European Symposium on Material Science in Space”, Grenoble, ESA SP-142 (1979).
[28].    Magyari, E., and Chamkha, A.J. “Exact analytical solutions for thermosolutal Marangoni convection in the presence of heat and mass generation or consumption”, Heat Mass Transfer, 43, pp. 965—974 (2007).
[29].    Lin, L., Zheng, L., and Zhang, X. “MHD Marangoni boundary layer flow and heat transfer of pseudo-plastic nanofluids over a porous medium with a modified model”, Mech. Time-Depend. Mater., 19, pp. 519—536 (2015).
[30].    Hayat, T., Shaheen, U., Shafiq, A., et al., “Marangoni mixed convection flow with Joule heating and nonlinear radiation”, AIP Adv., 5, pp. 077140 (2015).
[31].    Aly, E.H., and Ebaid, A. “Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium”, J. Mol. Liq., 215, pp. 625—639 (2016).
[32].    Ellahi, R., Zeeshan, A., and Hassan, M., “Particle shape effects on Marangoni convection boundary layer flow of a nanofluid”, Int. J. Numer. Methods Heat Fluid Flow, 26, pp. 2160—2174 (2016).
[33].    Xu, X., and Chen, S. “Cattaneo--Christov heat flux model for heat transfer of Marangoni boundary layer flow in a copper--water nanofluid”, Heat Transfer-Asian Res., pp. 1-13 (2017).
[34].    Sheikholeslami, M., and Chamkha, A. J. “Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection”, J. Mol. Liq., 225, pp. 750-757 (2017).
[35].    Mahanthesh, B., Gireesha, B.J., Shashikumar, N.S., et al., “Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source”, Physica E, 94, pp. 25-30 (2017).
[36].    Hayat, T., Ullah, I., Alsaedi, A., et al., “Simultaneous effects of non-linear mixed convection and radiative flow due to Riga-plate with double stratification”, J. Heat Transfer , Doi:10.1115/1.4039994 (2018).
[37].    Animasaun, I.L., Raju, C.S.K., and Sandeep, N. “Unequal diffusivities case of homogeneous--heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation”, Alex. Eng. J., 55, pp. 1595—1606 (2016).
[38].    Hayat, T., Haidera, F., Muhammad, T., et al., “Darcy--Forchheimer squeezed flow of carbon nanotubes with thermal radiation”, J. Phys. Chem. Solids, 120, pp. 79—86 (2018).
[39].    Hayat, T., Ullah, I., Alsaedi, A., et al., “Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction”, Results Phys., 7, pp. 715—722 (2017).
[40].    Hayat, T., Ullah, I., Muhammad, T., et al., “Radiative three-dimensional flow with Soret and Dufour effects”, Int. J. Mech. Sci., 133, pp. 829-837 (2017).
[41].    Gireesha, B.J., Mahanthesh, B., and Prasannakumara, B.C. “Exploration of activation energy and binary chemical reaction effects on nano Casson fluid flow with thermal and exponential space-based heat source”, Mult. Mod. Mat. Structures, 15, pp.  227-245 (2019).
[42].    Hayat, T., Ullah, I., Waqas, M., et al., “Attributes of activation energy and exponential based heat source in flow of Carreau fluid with cross-diffusion effects”, J. Non-Equilib. Thermodyn., 44, Doi.10.1515/jnet-2018-0049 (2018).
[43].    Hsiao, K.L. “To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method”, Energy, 130, pp. 486-499 (2017).
[44].    Hsiao, K.L. “combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects”, Appl. Therm. Eng., DOI: 10.1016/j.applthermaleng.2016.08.208, (2016).
[45].    Hsiao, K.L. “Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature”, Int. J. Heat Mass Transfer, 112, pp. 983—990 (2017).
[46].    Hayat, T., Ullah, I., Waqas, M., et al., “Flow of chemically reactive magneto Cross nanoliquid with temperature-dependent conductivity”, Appl Nanosci., 8, pp. 1453-1460 (2018).
[47].    Hayat, T., Ullah, I., Waqas, et al., “Simulation of nanofluid thermal radiation in Marangoni convection flow of non-Newtonian fluid: A revised model”, Int. J. Num. Meth. Heat Fluid Flow, 29, pp. 2840-2853 (2019).