References:
[1]. Choi, S.U.S., “Enhancing thermal conductivity of fluids with nanoparticle”, ASME Int. Mech. Eng. Cong. Exp., 66, pp. 99-105 (1995).
[2]. Hu, Z., Lu, W. and Thouless, M.D. “Slip and wear at a corner with Coulomb friction and an interfacial strength”, Wear, 338, pp. 242—251 (2015) .
[3]. Hu, Z., Thouless, M.D. and Lu, W. “Effects of gap size and excitation frequency on the vibrational behavior and wear rate of fuel rods”, Nuclear. Eng. Design, 308, pp. 261—268 (2016).
[4]. Imtiaz, M., Hayat, T. and Alsaedi, A. “Flow of magneto nanofluid by a radiative exponentially stretching surface with dissipation effect”, Adv. Powder Technol., 27, pp. 2214—2222 (2016).
[5]. Turkyilmazoglu, M., “Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids”, Chem. Eng. Sci., 84, pp. 182-187 (2012).
[6]. Zheng, L., Zhang, C., Zhang, X., et al., “Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium”, J. Franklin Inst., 350, pp. 990-1007 (2013).
[7]. Sheikholeslami, M., Hayat, T. and Alsaedi, A. “On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders”, Int. J. Heat Mass Transfer, 115, pp. 981—991 (2017).
[8]. Hsiao, K. “Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet”, Appl. Thermal Eng. 98, pp. 850-861 (2016).
[9]. Shehzad, S.A., Hussain, T., Hayat, T., et al., “Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation”, J. Central South Univ., 22, pp. 360—367 (2015).
[10]. Rahman, S. U., Ellahi, R., Nadeem, S., et al., “Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis”, J. Mol. Liq. 218, pp. 484-493 (2016).
[11]. Hayat, T., Ullah, I., Muhammad, T., et al., “Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions”, Chin. Phys. B, 25, pp. 074701 (2016).
[12]. Sandeep, N. “Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles”, Adv. Powder Techn., 28, pp. 865-875 (2017).
[13]. Hayat, T., Muhammad, K., Farooq, M., et al.,” Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface”, AIP Advances 6, pp. 015214 (2016).
[14]. Amala, S., and Mahanthesh, B. “Hybrid nanofluid flow over a vertical rotating plate in the presence of Hall current, nonlinear convection and heat absorption”, J. Nanofluids, 7, pp. 1138-1148 (2018) .
[15]. Muhammad, T., Lu, D.C., Mahanthesh, B., et al., “Significance of Darcy-Forchheimer porous medium in nanofluid through carbon nanotubes”, Commun. Theor. Phys., 70, pp. 361 (2018).
[16]. Shruthy, M., and Mahanthesh, B., “Rayleigh-Bénard convection in Casson and hybrid nanofluids: An analytical investigation”, J. Nanofluids, 8, pp. 222-229 (2019).
[17]. Ashlin, T.S., and Mahanthesh, B., “Exact solution of non-coaxial rotating and non-linear convective flow of Cu-Al2O3-H2O hybrid nanofluids over an infinite vertical plate subjected to heat source and radiative heat”, J. Nanofluids, 8, pp. 781-794 (2019).
[18]. Hayat, T., Ullah, I., Alsaedi, A., et al., “Three-dimensional mixed convection flow of Sisko nanoliquid”, Int. J. Mech. Sci., 133, pp. 273-282 (2017).
[19]. Si, X., Li, H., Zheng, L., et al., “A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate”, Int. J. Heat Mass Transfer, 105, pp. 350-358 (2017).
[20]. Khan, W.A., Khan, Z.H., and Haq, R.U., “Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux”, Eur. Phys. J. Plus, 130, pp. 86 (2015).
[21]. Wu, W., Wu, Z., Yu, T., et al., “Recent Progresses on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications”, Sci. Technol. Adv. Mater, 16, pp. 023501 (2015).
[22]. Gireesha, B.J., Gorla, R.S.R., and Mahanthesh, B., “Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet”, J. Nanofluids, 4, pp. 474—484 (2015).
[23]. Hayat, T., Ullah, I., Alsaedi, A., et al., “MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness”, Results in Phys., 7, pp. 189—196 (2017).
[24]. Hayat, T., Saleem, A., Tanveer, A., et al., “Numerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall properties”, Int. J. Heat Mass Transfer., 114, pp. 1181—1187 (2017).
[25]. Hayat, T., Ullah, I., Muhammad, T., et al., “Magnetohydrodynamic (MHD) three-dimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface”, J. Mol. Liq., 220, pp. 1004-1012 (2016).
[26]. Napolitano, L.G. “Microgravity fluid dynamics, in: 2nd Levitch Conference”, Washington, (1978).
[27]. Napolitano, L.G. “Marangoni boundary layers, in: Proc. 3rd European Symposium on Material Science in Space”, Grenoble, ESA SP-142 (1979).
[28]. Magyari, E., and Chamkha, A.J. “Exact analytical solutions for thermosolutal Marangoni convection in the presence of heat and mass generation or consumption”, Heat Mass Transfer, 43, pp. 965—974 (2007).
[29]. Lin, L., Zheng, L., and Zhang, X. “MHD Marangoni boundary layer flow and heat transfer of pseudo-plastic nanofluids over a porous medium with a modified model”, Mech. Time-Depend. Mater., 19, pp. 519—536 (2015).
[30]. Hayat, T., Shaheen, U., Shafiq, A., et al., “Marangoni mixed convection flow with Joule heating and nonlinear radiation”, AIP Adv., 5, pp. 077140 (2015).
[31]. Aly, E.H., and Ebaid, A. “Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium”, J. Mol. Liq., 215, pp. 625—639 (2016).
[32]. Ellahi, R., Zeeshan, A., and Hassan, M., “Particle shape effects on Marangoni convection boundary layer flow of a nanofluid”, Int. J. Numer. Methods Heat Fluid Flow, 26, pp. 2160—2174 (2016).
[33]. Xu, X., and Chen, S. “Cattaneo--Christov heat flux model for heat transfer of Marangoni boundary layer flow in a copper--water nanofluid”, Heat Transfer-Asian Res., pp. 1-13 (2017).
[34]. Sheikholeslami, M., and Chamkha, A. J. “Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection”, J. Mol. Liq., 225, pp. 750-757 (2017).
[35]. Mahanthesh, B., Gireesha, B.J., Shashikumar, N.S., et al., “Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source”, Physica E, 94, pp. 25-30 (2017).
[36]. Hayat, T., Ullah, I., Alsaedi, A., et al., “Simultaneous effects of non-linear mixed convection and radiative flow due to Riga-plate with double stratification”, J. Heat Transfer , Doi:10.1115/1.4039994 (2018).
[37]. Animasaun, I.L., Raju, C.S.K., and Sandeep, N. “Unequal diffusivities case of homogeneous--heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation”, Alex. Eng. J., 55, pp. 1595—1606 (2016).
[38]. Hayat, T., Haidera, F., Muhammad, T., et al., “Darcy--Forchheimer squeezed flow of carbon nanotubes with thermal radiation”, J. Phys. Chem. Solids, 120, pp. 79—86 (2018).
[39]. Hayat, T., Ullah, I., Alsaedi, A., et al., “Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction”, Results Phys., 7, pp. 715—722 (2017).
[40]. Hayat, T., Ullah, I., Muhammad, T., et al., “Radiative three-dimensional flow with Soret and Dufour effects”, Int. J. Mech. Sci., 133, pp. 829-837 (2017).
[41]. Gireesha, B.J., Mahanthesh, B., and Prasannakumara, B.C. “Exploration of activation energy and binary chemical reaction effects on nano Casson fluid flow with thermal and exponential space-based heat source”, Mult. Mod. Mat. Structures, 15, pp. 227-245 (2019).
[42]. Hayat, T., Ullah, I., Waqas, M., et al., “Attributes of activation energy and exponential based heat source in flow of Carreau fluid with cross-diffusion effects”, J. Non-Equilib. Thermodyn., 44, Doi.10.1515/jnet-2018-0049 (2018).
[43]. Hsiao, K.L. “To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method”, Energy, 130, pp. 486-499 (2017).
[44]. Hsiao, K.L. “combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects”, Appl. Therm. Eng., DOI: 10.1016/j.applthermaleng.2016.08.208, (2016).
[45]. Hsiao, K.L. “Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature”, Int. J. Heat Mass Transfer, 112, pp. 983—990 (2017).
[46]. Hayat, T., Ullah, I., Waqas, M., et al., “Flow of chemically reactive magneto Cross nanoliquid with temperature-dependent conductivity”, Appl Nanosci., 8, pp. 1453-1460 (2018).
[47]. Hayat, T., Ullah, I., Waqas, et al., “Simulation of nanofluid thermal radiation in Marangoni convection flow of non-Newtonian fluid: A revised model”, Int. J. Num. Meth. Heat Fluid Flow, 29, pp. 2840-2853 (2019).