Electrospinning of smart thermochromic nanofibers as sensors

Document Type : Article


1 Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Textile Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran

3 Department of Petroleum and Chemical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran


Color-transition features of polydiacetylene (PDA) have gained attention in recent years owing to its potential use in a wide range of sensors. This paper investigates electrospinning of PDA and polyvinylpyrolidone (PVP) to develop thermochromic nanofibrous composites. Polymer mixtures at different mass ratios and concentrations were electrospun and characterized afterwards. SEM results showed successful electrospinning of continuous and bead-free nanofibers with different diameters depending on the mass ratio of PVP to PDA. The obtained fibrous mats were then photo-polymerized under UV irradiation, which led to generation of a blue color showing the self-assembly of diacetylene monomers. The colorimetric transition of the fibers was also investigated and a color change from blue to red occurred by heating the fibers up to 80°C because of the conformational alterations in the PDA molecules. FTIR and DSC analysis validated these findings as well. As a result, the fabricated nanofibrous composites are potentially appropriate candidates for sensing applications.


1. Ding, B., Wang, M., Wang, X., Yu, J., and Sun, G. "Electrospun nanomaterials for ultrasensitive sensors", Mater. Today, 13(11), pp. 16-27 (2010). 
2.    Chinnappan, A., Baskar, C., Baskar, S., Ratheesh, G., and Ramakrishna, S. "An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics", J. Mater. Chem. C., 5(48), pp. 12657-12673 (2017). 
3.    Wang, X., Li, Y., and Ding, B. "Electrospun Nanofiber-Based Sensors", In Electrospun Nanofibers for Energy and Environmental Applications (Ding, B., and Yu, J. eds.), Springer, Berlin, Heidelberg, pp 267-297 (2014).
4.    Sapountzi, E., Braiek, M., Chateaux, J.-F., Jaffrezic-Renault, N., and Lagarde, F. "Recent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices", Sensors, 17(8), pp. 1887 (2017). 
5.    Yapor, J. P., Alharby, A., Gentry-Weeks, C., Reynolds, M. M., Alam, A. K. M. M., and Li, Y. V. "Polydiacetylene Nanofiber Composites as a Colorimetric Sensor Responding To Escherichia coli and pH", ACS Omega, 2(10), pp. 7334-7342 (2017). 
6.    Sun, X., Chen, T., Huang, S., Li, L., and Peng, H. "Chromatic polydiacetylene with novel sensitivity", Chem. Soc. Rev., 39(11), pp. 4244-4257 (2010). 
7.    Chen, X., Zhou, G., Peng, X., and Yoon, J. "Biosensors and chemosensors based on the optical responses of polydiacetylenes", Chem. Soc. Rev., 41(13), pp. 4610-4630 (2012). 
8.    Alam, A., Yapor, J. P., Reynolds, M. M., and Li, Y. V. "Study of polydiacetylene-poly (ethylene oxide) electrospun fibers used as biosensors", Materials, 9(3), pp. 202 (2016). 
9.    Jaewon, Y., Young‐Sik, J., and Jong‐Man, K. "A Combinatorial Approach for Colorimetric Differentiation of Organic Solvents Based on Conjugated Polymer‐Embedded Electrospun Fibers", Adv. Funct. Mater., 19(2), pp. 209-214 (2009). 
10.    Shin, M. J., and Kim, J.-D. "Chromatic reversibility of multilayered polydiacetylene cast film", J. Ind. Eng. Chem., 35(pp. 211-216 (2016). 
11.    Park, I. S., Park, H. J., Jeong, W., Nam, J., Kang, Y., Shin, K., Chung, H., and Kim, J.-M. "Low temperature thermochromic polydiacetylenes: design, colorimetric properties, and nanofiber formation", Macromolecules, 49(4), pp. 1270-1278 (2016). 
12.    Lee, S., Kim, J.-Y., Chen, X., and Yoon, J. "Recent progress in stimuli-induced polydiacetylenes for sensing temperature, chemical and biological targets", Chem. Commun., 52(59), pp. 9178-9196 (2016). 
13.    Lebegue, E., Farre, C., Jose, C., Saulnier, J., Lagarde, F., Chevalier, Y., Chaix, C., and Jaffrezic-Renault, N. "Responsive Polydiacetylene Vesicles for Biosensing Microorganisms", Sensors (Basel, Switzerland), 18(2), pp. (2018). 
14.    Sapountzi, E., Braiek, M., Chateaux, J. F., Jaffrezic-Renault, N., and Lagarde, F. "Recent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices", Sensors (Basel, Switzerland), 17(8), pp. (2017). 
15.    Bhardwaj, N., and Kundu, S. C. "Electrospinning: a fascinating fiber fabrication technique", Biotechnol. Adv., 28(3), pp. 325-347 (2010). 
16.    Davis, B. W., Burris, A. J., Niamnont, N., Hare, C. D., Chen, C.-Y., Sukwattanasinitt, M., and Cheng, Q. "Dual-mode optical sensing of organic vapors and proteins with polydiacetylene (PDA)-embedded electrospun nanofibers", Langmuir, 30(31), pp. 9616-9622 (2014). 
17.    Lee, J., Balakrishnan, S., Cho, J., Jeon, S.-H., and Kim, J.-M. "Detection of adulterated gasoline using colorimetric organic microfibers", J. Mater. Chem., 21(8), pp. 2648-2655 (2011). 
18.    Jeon, H., Lee, J., Kim, M. H., and Yoon, J. "Polydiacetylene‐based electrospun fibers for detection of HCl gas", Macromol. Rapid Commun., 33(11), pp. 972-976 (2012). 
19.    Ali, S., Ahmed, F., and Khatri, A. "Polycaprolactone-polydiacetylene electrospun fibers for colorimetric detection of fake gasoline", Mehran University Research Journal of Engineering & Technology, 35(2), pp. 287 (2016). 
20.    Reddy, V. R. T., Reddy, K. K., and Ravindra, S. "Effect of optimization parameters on the diameter of PVP fibers fabricated by electrospinning technique", International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, Chennai, India, pp. 733-736. (2013).
21.    Nasouri, K., Shoushtari, A. M., and Mojtahedi, M. R. M. "Effects of polymer/solvent systems on electrospun polyvinylpyrrolidone nanofiber morphology and diameter", Polym. Sci. Ser. A, 57(6), pp. 747-755 (2015). 
22.    Matatagui, D., Fernández, M. J., Santos, J. P., Fontecha, J., Sayago, I., Horrillo, M. C., Gràcia, I., and Cané, C. "Real-Time Characterization of Electrospun PVP Nanofibers as Sensitive Layer of a Surface Acoustic Wave Device for Gas Detection", J. Nanomater., 2014(pp. 8 (2014). 
23.    Dai, M., Jin, S., and Nugen, S. R. "Water-Soluble Electrospun Nanofibers as a Method for On-Chip Reagent Storage", Biosensors, 2(4), pp. 388-395 (2012). 
24.    Lukáš, D., Sarkar, A., Martinová, L., Vodsed'álková, K., Lubasová, D., Chaloupek, J., Pokorný, P., Mikeš, P., Chvojka, J., and Komárek, M. "Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century)", Textile Progress, 41(2), pp. 59-140 (2009). 
25.    Jelinek, R., and Ritenberg, M. "Polydiacetylenes–recent molecular advances and applications", RSC Adv., 3(44), pp. 21192-21201 (2013). 
26.    Kamphan, A., Khanantong, C., Traiphol, N., and Traiphol, R. "Structural-thermochromic relationship of polydiacetylene (PDA)/polyvinylpyrrolidone (PVP) nanocomposites: Effects of PDA side chain length and PVP molecular weight", J. Ind. Eng. Chem., 46, pp. 130-138 (2017). 
27.    Huang, S., Zhou, L., Li, M.-C., Wu, Q., Kojima, Y., and Zhou, D. "Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers", Materials, 9(7), pp. 523 (2016). 
28.    P., S. S., and M., S. W. "Investigations of chromatic transformations of polydiacetylene with aromatic compounds", J. Appl. Polym. Sci., 120(5), pp. 2809-2820 (2011).