Analytical view of magnetic hydrodynamic rotating flow of Barium Ferrite nano fluid with viscous dissipation

Document Type : Article

Authors

1 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

2 -Mathematics and its Applications in Life Sciences Research Group, Ton Duc Thang University, Ho Chi Minh City 700000,Vietnam -Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City700000, Vietnam

3 4Department of Mathematics, Faculty of Natural Science, HITEC University 47080, Taxila Cannt 47070, Pakistan

Abstract

This study is involved for an MHD rotating nanofluid flow over a stretching surface. The base fluid via water and kerosene liquids are employed with Barium Ferrite BaO.6〖Fe〗_2 O_(3 ) nanosize particles in our investigation and normally say to ferrofluid. Governing equations involving partial derivatives of the problem are established and converted into dimensionless forms of ordinary derivatives by means of suitable and compatible similarity transformations. Transformed system of equations is tackled by a reliable numerical scheme as midpoint integration pattern together with an extrapolation scheme of Richardson. This numerical pattern is launched in maple software. Variations in flow, velocity and temperature due to involving parameters are recorded via graphs and tables. Our targeted quantities like local tangential stress and heat transfer rate at the wall are calculated for nanofluid. Heat transfer rate at surface level z=0 rises with rise in solid nanoparticle φ but it falls with a rise in magnetic factor M, spin factor λ, and Eckert number Ec. The higher heat transfer rate is recorded in case of kerosene grounded Ferro fluid. Base fluid owns a vital role for determinations. We prefer water as a base fluid for significant outcomes.

Keywords


References:
1)    Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States).
2)    Lee, S., & Choi, S. U. (1996). S. Application of metallic nanoparticle suspensions in advanced cooling systems. Recent advance in solids/structures and application of metallic materials, ASME MD-72, 227-234.
3)    Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170.
4)    Wang, X., Xu, X., & Choi, S. U. (1999). Thermal conductivity of nanoparticle-fluid mixture.’’Journal of Thermophysics and Hat Transfer’’, 13(4), 474-480.
5)    Li, Q., & Xuan, Y. (2000). Experimental investigation of transport properties of nanofluids. Heat transfer science and technology, 2000, 757-762.
6)    Buongiorno, J. (2006) "Convective transport in nanofluids" J. Heat Transfer, 128(3): 240-250.
7)    Kakaç, S., & Pramuanjaroenkij, A (2009). Review of convective heat transfer enhancement with nanofluids.“International journal of Heat and Mass Transfer”,52(13-14), 3187-3196.
8)    Xuan, Y. (2009). Conception for enhanced mass transport in binary nanofluids.“Heat and Mass Transfer”,46(2), 277.
9)    Wong, K. F. V., & Leon, O. D. (2010). Applications of nanofluids: current and future. Adv in Mecha Eng. Article ID, 519659.
10)    Avramenko, A. A., Shevchuk, I. V., Tyrinov, A. I., & Blinov, D. G. (2014). Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate. Applied Thermal Engineering, 73(1), 391-398.
11)    Avramenko, A. A., Shevchuk, I. V., Tyrinov, A. I., & Blinov, D. G. (2015). Heat transfer in stable film boiling of a nanofluid over a vertical surface. International Journal of Thermal Sciences, 92, 106-118.
12)    Avramenko, A. A., Shevchuk, I. V., Tyrinov, A. I., & Blinov, D. G. (2015). Heat transfer at film condensation of moving vapor with nanoparticles over a flat surface. International Journal of Heat and Mass Transfer, 82, 316-324.
13)    Ahmed, Z., Nadeem, S., Saleem, S., & Ellahi, R. (2019). Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. International Journal of Numerical Methods for Heat & Fluid Flow, 29(12),4607-4623.
14)    Avramenko, A. A., & Shevchuk, I. V. (2019). Lie group analysis and general forms of self-similar parabolic equations for fluid flow, heat and mass transfer of nanofluids. Journal of Thermal Analysis and Calorimetry, 135(1), 223-235.
15)    Nazari, S., Ellahi, R., Sarafraz, M. M., Safaei, M. R., Asgari, A., & Akbari, O. A. (2019). Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. Journal of Thermal Analysis and Calorimetry, 140:1121–1145.
16)    Ellahi, R., Sait, S. M., Shehzad, N., & Ayaz, Z. (2019). A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. International Journal of Numerical Methods for Heat & Fluid Flow, 30(2), 834-854.
17)    Ellahi, R., Hussain, F., Abbas, S. A., Sarafraz, M. M., Goodarzi, M., & Shadloo, M. S. (2020). Study of two-phase Newtonian nanofluid flow hybrid with Hafnium particles under the effects of slip. Inventions, 5(1), 6.
18)    Gul, M., Abbasi, F. M., Shehzad, S. A., & Shafee, A. (2020). Entropy generation for peristaltic motion of Carreau’s fluid with mixture of ethylene glycol and boron-nitride nanoparticles. Physica Scripta, 95(3), 035212.
19)    Sarafraz, M. M., Pourmehran, O., Yang, B., Arjomandi, M., & Ellahi, R. (2020). Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. International Journal of Thermal Sciences, 147, 106131.
20)    Crane, L. J. (1970). Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP, 21(4), 645-647.
21)    Wang, C. Y. (1984). The three‐dimensional flow due to a stretching flat surface. “The Physics of Fluids”,27(8), 1915-1917.
22)    Rajagopal, K. R., Na, T. Y., & Gupta, A. S. (1984). Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta, 23(2), 213-215.
23)    McLeod, J. B., & Rajagopal, K. R. (1989). On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary. In Analysis and Continuum Mechanics (pp. 565-573). Springer, Berlin, Heidelberg.
24)    Abel, M. S., Siddheshwar, P. G., & Nandeppanavar, M. M. (2007). Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non-uniform heat source. International Journal of Heat and Mass Transfer, 50(5-6), 960-966.
25)    Bataller, R. C. (2007). Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a non-uniform heat source, viscous dissipation and thermal radiation. International Journal of Heat and Mass Transfer, 50(15-16), 3152-3162.
26)    Yacob, N. A., Ishak, A., Pop, I., & Vajravelu, K. (2011). Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid.“Nanoscale Research Letters”,6(1), 314.
27)    Bachok, N., Ishak, A., & Pop, I. (2012). Flow and heat transfer characteristics on a moving plate in a nanofluid. International Journal of Heat and Mass Transfer, 55(4), 642-648.
28)    Sharma, R., Ishak, A., & Pop, I. (2013). Partial slip flow and heat transfer over a stretching sheet in a nanofluid. Mathematical Problems in Engineering, 2013.
29)    Bachok, N., Ishak, A., Nazar, R., & Senu, N. (2013). Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water nanofluid. Boundary Value Problems, 2013(1), 39.
30)    Nazar, R., Amin, N., & Pop, I. (2004). Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mechanics Research Communications, 31(1), 121-128.
31)    Sheikholeslami, M., & Ashorynejad, H. R. DD Ganji and A. Kolahdooz, 2011. Investigation of rotating MHD viscous flow and heat transfer between stretching and porous surfaces using analytical method. Mathematical Problems in Engineering, Article ID, 258734.
32)    Aladag, B., Halelfadl, S., Doner, N., Maré, T., Duret, S., & Estellé, P. (2012). Experimental investigations of the viscosity of nanofluids at low temperatures. Applied Energy, 97, 876-880.
33)    Halelfadl, S., Estellé, P., Aladag, B., Doner, N., & Maré, T. (2013). Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. International Journal of Thermal Sciences, 71, 111-117.
34)    Khan, A. A., Usman, H., Vafai, K., & Ellahi, R. (2016). Study of peristaltic flow of magnetohydrodynamics Walter's B fluid with slip and heat transfer. Scientia Iranica, 23(6), 2650-2662.
35)    Abbasi, F. M., Shanakhat, I., & Shehzad, S. A. (2019). Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. Journal of Magnetism and Magnetic Materials, 474, 434-441.
36)    Sahoo, B., & Shevchuk, I. V. (2019). Heat transfer due to revolving flow of Reiner-Rivlin fluid over a stretchable surface. Thermal Science and Engineering Progress, 10, 327-336.
37)    Shehzad, S. A., Reddy, M. G., Rauf, A., & Abbas, Z. (2020). Bioconvection of Maxwell nanofluid under the influence of double diffusive Cattaneo–Christov theories over isolated rotating disk. Physica Scripta, 95(4), 045207.
38)    Debnath, L. On unsteady MHD boundary layers in a rotating flow, Recent Research in Unsteady Boundary Layers, Les Presses De L'Universite Laval, Quebec, 1972.
39)    Takhar, H. S., & Nath, G. (1998). Unsteady flow over a stretching surface with a magnetic field in a rotating fluid. Zeitschrift für angewandte Mathematik und Physik, 49(6), 989-1001.
40)    Rosensweig, R. E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252, 370-374.
41)    Kumari, M., & Nath, G. (2005). Transient rotating flow over a moving surface with a magnetic field. International Journal of Heat and Mass Transfer, 48(14), 2878-2885.
42)    Kumari, M., & Nath, G. (2009). Analytical solution of unsteady three-dimensional MHD boundary layer flow and heat transfer due to impulsively stretched plane surface. Communications in Nonlinear Science and Numerical Simulation, 14(8), 3339-3350.
43)    Kumaran, V., Banerjee, A. K., Kumar, A. V., & Pop, I. (2011). Unsteady MHD flow and heat transfer with viscous dissipation past a stretching sheet. International Communications in Heat and Mass Transfer, 38(3), 335-339.
44)    Khan, Z. H., Khan, W. A., Qasim, M., & Shah, I. A. (2013). MHD stagnation point ferrofluid flow and heat transfer toward a stretching sheet. IEEE Transactions on Nanotechnology, 13(1), 35-40.
45)    Sheikholeslami, M., Hatami, M., & Ganji, D. D. (2014). Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. Journal of Molecular Liquids, 190, 112-120.
46)     Khan, A. A., Usman, H., Vafai, K., & Ellahi, R. (2016). Study of peristaltic flow of magnetohydrodynamics Walter's B fluid with slip and heat transfer. Scientia Iranica, 23(6), 2650-2662.
47)    Abbasi, F. M., Shanakhat, I., & Shehzad, S. A. (2019). Analysis of entropy generation in peristaltic nanofluid flow with Ohmic heating and Hall current. Physica Scripta, 94(2), 025001.
48)    Ellahi, R., Sait, S. M., Shehzad, N., & Mobin, N. (2019). Numerical simulation and mathematical modeling of electro-osmotic Couette–Poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry, 11(8), 1038.
49)    Waqas, M., Jabeen, S., Hayat, T., Shehzad, S. A., & Alsaedi, A. (2020). Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. International Communications in Heat and Mass Transfer, 112, 104401.
50)    Khan, L. A., Raza, M., Mir, N. A., & Ellahi, R. (2019). Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. Journal of Thermal Analysis and Calorimetry, 1-12.
51)    Abbas, N., Nadeem, S., & Malik, M. Y. (2020). On extended version of Yamada–Ota and Xue models in micropolar fluid flow under the region of stagnation point. Physica A: Statistical Mechanics and its Applications, 542, 123512.
52)    Ascher, U. M., Mattheij, R. M., & Russell, R. D. (1994). Numerical solution of boundary value problems for ordinary differential equations (Vol. 13). Siam.
53)    Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations and differential-algebraic equations (Vol. 61). Siam.
54)    Noghrehabadi, A., Ghalambaz, M., & Samimi, A. (2013). Approximate solution of laminar thermal boundary layer over a thin plate heated from below by convection,2(2),45-57.
55)    Wang, C. Y. (1988). Stretching a surface in a rotating fluid. Zeitschrift für angewandte Mathematik und Physik ZAMP, 39(2), 177-185.
56)    Nadeem, S., Rehman, A. U., & Mehmood, R. (2016). Boundary layer flow of rotating two phase nanofluid over a stretching surface. Heat Transfer—Asian Research, 45(3), 285-298.
Volume 27, Issue 6 - Serial Number 6
Transactions on Nanotechnology (F)
November and December 2020
Pages 3421-3433
  • Receive Date: 18 September 2019
  • Revise Date: 30 June 2020
  • Accept Date: 14 September 2020