References
1. Eringen, A.C. \Theory of micropolar uids", J. Math.Mech., 16, pp. 1{18 (1966).2. Uddin, Z., Kumar, M., and Harmand, S. \Inuenceof thermal radiation and heat generation absorptionon MHD het transfer ow of a micropolaruid past awedge with hall and ion slip currents", Thermal Sci.,18, p. S489 (2014).3. Mukhopadhyay, S. and Bhattacharyya, K. \Unsteadyow of a Maxwell
uid over a stretching surface inpresence of chemical reaction", J.E. Math. Soc., 20(3),pp. 229{234 (2012).4. Abel, M.S., Tawade, J.V., and Nandeppanavar, M.M.\MHD
ow and heat transfer for the upper-convectedMaxwell uid over a stretching sheet", Meccanica, 1,pp. 25{38 (2013).5. Shah, S., Hussain, S., and Sagheer, M. \MHD eectsand heat transfer for the UCM uid along withJoule heating and thermal radiation using Cattaneo-Christov heat
ux model", AIP Adv., 6, p. 085103(2016).6. Renardy, M. \High Weissenberg number boundarylayers for the upper convected Maxwell uid", J. Non-Newtonian Fluid Mech., 68, pp. 125{133 (1997).7. Olaru, I. \A study of the cooling systems and uid owsimulation in metal cutting processing", IOP Conf.Ser. Mater. Sci. Eng., 227, p. 012086 (2017).8. Abel, M.S. and Mahesha, N. \Heat transfer in MHDviscoelastic uid ow over a stretching sheet with
variable thermal conductivity non-uniform heat sourceand radiation", Appl. Mathematical Model., 32(10),pp. 1965{1983 (2008).9. Guilmineau, E. \Computational study of
ow arounda simplied car body", J. Wind Engin. and IndustrialAerodynamics, 6(7), pp. 1207{1217 (2008).10. Levenspiel, O. \Chemical reaction engineering",
Chem. Res., 38(11), pp. 4140{4143 (1999).11. Rana, S., Nawaz, M., and Qureshi, I.H. \Numericalstudy of hydrothermal characteristics in nano uidusing KKL model with Brownian motion", Sci. Iran.,26(3), pp. 1931{1943 (2019).12. Atif, S.M., Hussain, S., and Sagheer, M. \Eectof thermal radiation on MHD micropolar Carreaunanouid with viscous dissipation, Joule heating, andinternal heating", Sci. Iran., Transaction F., Nanotechnology,26(6), pp. 3875{3888 (2019).13. Eringen, A.C. \Theory of thermomicro uid", J. Math.Anal. Appl., 138, pp. 480{496 (1972).14. Das, K. \Slip eects on MHD mixed convectionstagnation point ow of a micropolar
uid towards ashrinking vertical sheet", Comput. Math. Appl., 63(1),pp. 255{267 (2012).15. Ibrahim, W. and Zemedu, C. \MHD nonlinear mixedconvection ow of micropolar nanouid over nonisothermalsphere", Math. Prob. Eng., 2020(1), p.4735650 (2020).16. Ashraf, M. and Batool, K. \MHD ow and heattransfer of a micropolar uid over a stretchable disk",J. Theor. Appl. Mech., 51(1), pp. 25{38 (2013).17. Tripathy, R.S., Dash, G.C., Mishra, S.R., et al.\Numerical analysis of hydromagnetic micropolar uidalong a stretching sheet embedded in porous mediumwith non-uniform heat source and chemical reaction",Eng. Sci. Technol. Int. J., 19, pp. 1573{1581 (2016).18. Yasin, M.M., Ishak, A., and Pop, I. \MHD stagnationpoint
ow and heat transfer with eects of viscousdissipation joule heating and partial velocity slip", Sci.Rep., 5, p. 17848 (2015).19. Lian-Cun, Z., Xin-Xin, Z., and Chun-Qing. L. \Heattransfer for power law non-Newtonian uids", Chin.Phys. Lett., 23(12), p. 3301 (2006).20. Cattaneo, C. \Sulla conduzione del calore", Atti Sem.Mat. Fis, Univ. Modena., 3(1) pp. 83{101 (1948).21. Christov, C.I. \On frame indierent formulation ofthe Maxwell-Cattaneo model of nite-speed heat conduction",Mech. Res. Commun., 36(4), pp. 481{486(2009).22. Mahapatra, T.R., Nandy, S.K., and Gupta, A.S. \Magnetohydrodynamicstagnation-point ow of a powerlaw
uid towards a stretching surface", Int. J. Non-LinearMech., 44, pp. 124{129 (2009).23. Sadeghy, K., Hajibeygi, H., and Taghavi, S.M.\Stagnation-point ow of upper-convected Maxwell
uids", Int. J. Non-Lin. Mech., 41(10), pp. 1242{1247(2006).24. Kumari, M. and Nath, G. \Steady mixed convectionstagnation-point ow of upper convected Maxwelluids with magnetic eld", Int. J. Non-Lin. Mech.,44(10), pp. 1048{1055 (2009).25. Han, S., Zheng, L., Li, C., et al. \Coupled owand heat transfer in viscoelastic uid with Cattaneo-Christov heat ux model", Appl. Math. Letters, 38,pp. 87{93 (2014).26. Sheikholeslami, M., Ganji, D.D., Li, Z., et al. \Numerical
simulation of thermal radiative heat transfereects on Fe3O4-ethylene glycol nanouid EHD
ow ina porous enclosure", Sci. Iran., 26(3), pp. 1405{1414(2019).1234 M.B. Hafeez et al./Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 1223{123527. Ismael, M.A. and Ghalib, H.S. \Double diusive naturalconvection in a partially layered cavity with inner
solid conductive body", Sci. Iran., B., 25(5), pp. 2643{2659 (2018).28. Ghaarpasand, O. \Unsteady double-diusive naturalconvection with Soret and Dufour eects inside a twosidedlid-driven skewed enclosure in the presence ofapplied magnetic eld", Sci. Iran., B., 25(3), pp.1215{1235 (2018).29. Ghaarpasand, O. \Eect of alternating magneticeld on unsteady MHD mixed convection and entropygeneration of ferro uid in a linearly heated two-sided
cavity", Sci. Iran., 24(3), pp. 1108{1125 (2017).30. Alinia, M., Gorji-Bandpy, M., Ganji, D.D., et al.\Two-phase natural convection of SiO2-water nanouid in an inclined square enclosure", Sci. Iran., 21(5),pp. 1643{1654 (2014).31. Sheikhzadeh, G.A., Heydari, R., Hajialigol, N., et al.
\Heat and mass transfer by natural convection arounda hot body in a rectangular cavity", Sci. Iran., 20(5),pp. 1474{1484 (2013).32. Amini, Y., Emdad, H., and Farid, M. \Fluid-tructureinteraction analysis of a piezoelectric exible plate in acavity lled withuid", Sci. Iran., 23(2), pp. 559{565(2016).33. Arefmanesh, A., Mahmoodi, M., and Nikfar, M.\Eect of position of a square-shaped heat source onbuoyancy-driven heat transfer in a square cavity lledwith nano uid", Sci. Iran., 21(3), pp. 1129{1142(2014).34. Kaneez, H., Alebraheem, J., Elmoasry, A., et al.\Numerical investigation on transport of momenta and
energy in micropolar uid suspended with dusty, monoand hybrid nano-structures", AIP Adva., 10(4), p.045120 (2020).35. Fatunmbi, E.O. and Okoya, S.S. \Heat transferin boundary layer magneto-micropolar uids withtemperature-dependent material properties over astretching sheet", Adv. Mater. Sci. Eng., p. 5734979(2020).36. Srinivasacharya, D. and Mendu, D.S. \Free convectionin MHD micropolar uid with radiation and chemicalreaction eects", Chem. Ind. Chem. Eng. Q., 20(2),pp. 183{195 (2014).37. Raftari, B. and Yildirim, A. \The application of homotopy
perturbation method for MHD ows of UCMuids above porous stretching sheets", Comput. Math.Appl., 59(10), pp. 3328{3337 (2010).38. Mushtaq, A., Mustafa, M., Hayat, T., et al. \Buoyancyeects in stagnation-point ow of Maxwell uid utilizingnon-Fourier heat ux approach", Plos One, 13(7),p. e0200325 (2018).39. Khan, M.S. and Khan, M.I. \A novel numerical algorithmbased on Galerkin-Petrov time-discretizationmethod for solving chaotic nonlinear dynamical systemsnonlinear dynamics", Nonlinear Dyn., 91(3), pp.1555{1569 (2018).40. Abel, M.S., Tawade, J.V., and Nandeppanavar, M.M.\MHD
ow and heat transfer for the upper convectedMaxwell uid over a stretching sheet", Mecc., 47, pp.385{393 (2012).41. Megahed, A.M. \Variable uid properties and variableheat ux eects on the ow and heat transfer in a non-Newtonian Maxwell uid over an unsteady stretchingsheet with slip velocity", Chin. Phys. B., 22, p. 094701(2012).42. Mustafa, M., Hayat, T., and Alsaedi, A. \Rotating owof Maxwell uid with variable thermal conductivity anapplication to non-Fourier heat
ux theory", Int. J.Heat Mass Transf., 106, pp. 142{148 (2017).