References:
[1] Yazdaninejadi, A., Hamidi, A., Golshannavaz, S., Aminifar, F., and Teimourzadeh, S. “Impact of inverter-based DERs integration on protection, control, operation, and planning of electrical distribution grids,” Electr. J., vol. 32, no. 6, pp. 43–56, 2019, doi: 10.1016/j.tej.2019.05.016.
[2] Y. Nejadi, A., Sattarpour, T., and Farsadi, M. “Simultaneously optimal placement and operation scheduling of besss and dgs in distribution networks in order to minimizing net present value related to power losses,” vol. 16. 2016.
[3] Mohammadi, J., Hug, G., and Kar, S. “Agent-based distributed security constrained optimal power flow,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1118–1130, 2018, doi: 10.1109/TSG.2016.2577684.
[4] Bhaskar, M. M. “Security Constraint Optimal Power Flow ( Scopf ) – a Comprehensive Survey,” Trans. Power Syst. , Proterction Distrib., vol. 2, no. June, p. 10, 2011, doi: 10.5120/1583-2122.
[5] Alsac, O., and Stott, B. “Optimal load flow with steady-state security,” IEEE Trans. Power Appar. Syst., vol. PAS-93, no. 3, pp. 745–751, 1974, doi: 10.1109/TPAS.1974.293972.
[6] Rahmani, S., and Amjady, N. “Improved normalised normal constraint method to solve multi-objective optimal power flow problem,” vol. 12, pp. 859–872, 2018, doi: 10.1049/iet-gtd.2017.0289.
[7] Won , J. R., and Choi, K. “Security-Constrained Optimal Power Flow Using First-Order Contingency Sensitivity Matrix,” IFAC Proc. Vol., vol. 36, no. 20, pp. 1019–1023, 2003, doi: 10.1016/S1474-6670(17)34608-6.
[8] Capitanescu, F., Glavic, M., Ernst, D., and Wehenkel, L. “Applications of security-constrained optimal power flows,” Mod. Electr. Power Syst. Symp. MEPS06, no. September, p. 7, 2006.
[9] Phan, D. T., and Kalagnanam, J. R.“Some Efficient Optimization Methods for Solving the Security-Constrained Optimal Power Flow Problem,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 863–872, 2014, doi: 10.1109/TPWRS.2013.2283175.
[10] Dias, L. G., and El-Hawary, M. E. “Security-Constrained Opf: Influence Of Fixed Tap Transformer Fed Loads,” IEEE Trans. Power Syst., vol. 6, no. 4, pp. 1366–1372, 1991, doi: 10.1109/59.116977.
[11] Farsadi, M., Sattarpour, T., and Y. Nejadi, A. “Optimal placement and operation of BESS in a distribution network considering the net present value of energy losses cost,” ELECO 2015 - 9th Int. Conf. Electr. Electron. Eng., pp. 434–439, 2016, doi: 10.1109/ELECO.2015.7394582.
[12] Shahidehpour, M., and Fotuhi-friuzabad, M. “Grid modernization for enhancing the resilience , reliability , economics , sustainability , and security of electricity grid in an uncertain environment,” vol. 23, pp. 2862–2873, 2016.
[13] Prasanta, P., Jain, P., Sharma, S., and Bhaker, R. “Security Constrained Unit Commitment in a Power System based on Battery Energy Storage with High Wind Penetration,” 2018 Int. Conf. Power, Instrumentation, Control Comput., pp. 1–6, 2018.
[14] Castillo, A., Gayme, D. F.,and Member, S. “Evaluating the Effects of Real Power Losses in Optimal Power Flow,” vol. 5870, no. c, pp. 1–13, 2017, doi: 10.1109/TCNS.2017.2687819.
[15] Jannati, J., Yazdaninejadi, A., and Talavat, V. “Simultaneous planning of renewable/ non-renewable distributed generation units and energy storage systems in distribution networks,” Trans. Electr. Electron. Mater., vol. 18, no. 2, pp. 111–118, 2017, doi: 10.4313/TEEM.2017.18.2.111.
[16] Thomas, J. J., and Grijalva, S. “Flexible security-constrained optimal power flow,” IEEE Trans. Power Syst., vol. 30, no. 3, pp. 1195–1202, 2015, doi: 10.1109/TPWRS.2014.2345753.
[17] Wen, Y., Guo, C., Kirschen, D. S., and Dong, S. “Enhanced security-constrained OPF with distributed battery energy storage,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 98–108, 2015, doi: 10.1109/TPWRS.2014.2321181.
[18] Platbrood, L., Capitanescu, F., Merckx, C., Crisciu, H., and Wehenkel, L. “A Generic Approach for Solving Nonlinear-Discrete Security-Constrained Optimal Power Flow Problems in Large-Scale Systems,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1194–1203, 2014, doi: 10.1109/TPWRS.2013.2289990.
[19] Simab, M., Chatrsimab, S., Yazdi, S., and Simab, A. “Using integrated method to rank the power system contingency,” vol. 24, pp. 1373–1383, 2017.
[20] de Quevedo, P., and Contreras, J. “Optimal Placement of Energy Storage and Wind Power under Uncertainty,” Energies, vol. 9, no. 7, 2016, doi: 10.3390/en9070528.
[21] Shim, J. W., Kim, H., and Hur, K. “Incorporating State-of-Charge Balancing into the Control of Energy Storage Systems for Smoothing Renewable Intermittency,” Energies, vol. 12, no. 7, 2019, doi: 10.3390/en12071190.
[22] Wood, A. J., Wollenberg, B. F., and Gerald, S. B. Power Generation, Operation and Control, Third. 2014.
[23] Biskas, P. N., and Bakirtzis, A. G. “Decentralised security constrained DC-OPF of interconnected power systems,” pp. 747–754, doi: 10.1049/ip-gtd.
[24] Nangrani, S. P. “Power System Security Assessment using Ranking based on Combined MW-Chaotic Performance Index,” 2015.
[25] “Newyork independant system operator.” [Online]. Available: https://www.nyiso.com/.
[26] Acopf, C. W., F. Li, Member, S., Bo, R., and Member, S. “DCOPF-Based LMP Simulation : Algorithm ,” vol. 22, no. 4, pp. 1475–1485, 2007.
[27] González, M., and Miguel, J. “An Updated Version of the IEEE RTS 24-Bus System for Electricity Market and Power System Operation Studies.”
[28] Pessanha, J. F. M. “Impact of Wind Speed Correlations on Probabilistic Power Flow by using the Nataf Transformation,” 2018 IEEE Int. Conf. Probabilistic Methods Appl. to Power Syst., pp. 1–6, doi: 10.1109/PMAPS.2018.8440221.