Prediction of the size of silver nanoparticles prepared via green synthesis: A gene expression programming approach

Document Type : Article

Authors

Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, P.O. Box 76135-133, Kerman, Iran

Abstract

This study presents a new prediction model for estimating the size of AgNPs prepared by green synthesis via gene expression programming (GEP). Firstly, 30 different experiments were used to construct the GEP models. Plant extract, reaction temperature, concentration of AgNO3 and stirring time parameters were considered as input and the size of AgNPs parameter selected as output variables. By consideration of correlation coefficient (R2), mean absolute error (MAE), root relative square error (RRSE) as criteria, the performance of proposed models by GEP were compared each other. Finally, the best model (i.e., GEP-1) with R2=0.9961, MAE=0.2545 and RRSE=0.0668 proposed as a new model with simplified mathematical expressions to estimate the size of AgNPs. The results of sensitivity analysis showed that the amount of plant extract, the concentration of AgNO3, stirring time and reaction temperature are the most effective parameters on the size of AgNPs, respectively. Proposed model via gene expression is satisfactory and can be extended for a wide range of applications. Moreover, the proposed model provides the possibility of preparation of the minimum materials consumption for preparation of the lowest size of AgNPs by consideration of practical or economical constraints.

Keywords


References:
1.  antra T.S., Tseng F.-G.K., Barik T.K. "Biosynthesis of Silver and Gold Nanoparticles for Potential Biomedical applications—A Brief Review", J Nanopharm Drug Deliv, 2(4), pp. 249-265 (2014).
2.    Saber M.M., Mirtajani S.B., Karimzadeh K. "Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells", J Drug Deliv Sci Tech, 47, pp. 375-379 (2018).
3.    Pirtarighat S., Ghannadnia M., Baghshahi S. "Antimicrobial effects of green synthesized silver nanoparticles using Melissa officinalis grown under in vitro condition", Nanomed J, 4(3), pp. 184-190 (2017).
4.    Govindaraju K., Basha S.K., Kumar V.G., et al. "Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler", J. Mater. Sci, 43(15), pp. 5115-5122 (2008).
5.    Kumar A., Mandal S., Selvakannan P., et al. "Investigation into the interaction between surface-bound alkylamines and gold nanoparticles", Langmuir, 19(15), pp. 6277-6282 (2003).
6.    Mukherjee S., Nethi S.K., Patra C.R. Green Synthesized Gold Nanoparticles for Future Biomedical Applications.  Particulate Technology for Delivery of Therapeutics, Springer, pp. 359-393 (2017).
7.    Shabanzadeh P., Yusof R., Shameli K. "Artificial neural network for modeling the size of silver nanoparticles’ prepared in montmorillonite/starch bionanocomposites", J Ind Eng Chem, 24, pp. 42-50 (2015).
8.    Behnia D., Ahangari K., Goshtasbi K., et al. "Settlement modeling in central core rockfill dams by new approaches", Int. J. Min. Sci. Technol, 26(4), pp. 703-710 (2016).
9.    Jafari M.M., Khayati G.R. "Prediction of hydroxyapatite crystallite size prepared by sol–gel route: gene expression programming approach", J Sol-Gel Sci Techn, 86(1), pp. 112-125 (2018).
10.    Koza J.R. Genetic Programming II, Automatic Discovery of Reusable Subprograms: MIT Press, Cambridge, MA; (1992).
11.    Kayadelen C. "Soil liquefaction modeling by genetic expression programming and neuro-fuzzy", Expert Syst Appl, 38(4), pp. 4080-4087 (2011).
12.    Khademalrasoul A., Adib A. "Mixed-mode fracture parameters estimation by genetic programming", Sci Iran, pp. (2018).
13.    Iqbal M.F., Liu Q.-f., Azim I., et al. "Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming", J. hazard. mater, 384, pp. 1-17 (2020).
14.    Ferreira C. Gene expression programming: mathematical modeling by an artificial intelligence: Springer, (2006).
15.    Teodorescu L., Sherwood D. "High energy physics event selection with gene expression programming", Comput Phys Commun, 178(6), pp. 409-419 (2008).
16.    Khandelwal M., Faradonbeh R.S., Monjezi M., et al. "Function development for appraising brittleness of intact rocks using genetic programming and non-linear multiple regression models", Eng Comput-Germany, 33(1), pp. 13-21 (2017).
17.    Hoseinian F.S., Faradonbeh R.S., Abdollahzadeh A., et al. "Semi-autogenous mill power model development using gene expression programming", Powder Technol, 308, pp. 61-69 (2017).
18.    Ferreira C., Gepsoft U. What is gene expression programming. (2008).
19.    Sarıdemir M. "Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design", Mater Design (1980-2015), 56, pp. 297-304 (2014).
20.    Yekani Motlagh S., Sharifi A., Ahmadi M., et al. "Presentation of new thermal conductivity expression for Al2O3-water and CuO-water nanofluids using gene expression programming (GEP)", J Therm Anal Calorim, 135(1), pp. 195-206 (2019).
21.    Abdellahi M., Bhmanpour M., Bahmanpour M. "Optimization of process parameters to maximize hardness of metal/ceramic nanocomposites produced by high energy ball milling", Ceram Int, 40(10), pp. 16259-16272 (2014).
22.    Keshavarz A., Tofighi H. "Gene expression programming models for liquefaction-induced lateral spreading", Sci Iran, pp.1-37 (2018).
23.    Bhowmik S., Paul A., Panua R., et al. "Artificial intelligence based gene expression programming (GEP) model prediction of Diesel engine performances and exhaust emissions under Diesosenol fuel strategies", Fuel, 235, pp. 317-325 (2019).
24.    Abdellahi M., Bahmanpour M., Bahmanpour M. "Laminating; the best way to improve Charpy impact energy of nanocomposites", Ceram Intl, 40(10), pp. 16115-16125 (2014).
25.    Hosseini S.S.S., Gandomi A.H. "Short-term load forecasting of power systems by gene expression programming", Neural Comput Appl, 21(2), pp. 377-389 (2012).
26.    Liu L.-W., Wang Y.-M. "Modelling Reservoir Turbidity Using Landsat 8 Satellite Imagery by Gene Expression Programming", Water, 11(7), pp. 1479 (2019).
27.    Abdellahi M., Karafshani M.K., Rizi A.S. "Modeling effect of SiO 2 nanoparticles on the mechanical properties of the concretes", Journal of Building Pathology and Rehabilitation, 2(1), pp. 8 (2017).
28.    Ferreira C. Gene expression programming in problem solving.  Soft computing and industry: Springer, pp. 635-653 (2002).
29.    Aytek A., Alp M. "An application of artificial intelligence for rainfall-runoff modeling", J Earth Syst Sci, 117(2), pp. 145-155 (2008).
30.    Baykasoğlu A., Güllü H., Çanakçı H., et al. "Prediction of compressive and tensile strength of limestone via genetic programming", Expert Syst Appl, 35(1-2), pp. 111-123 (2008).
31.    Armaghani D.J., Safari V., Fahimifar A., et al. "Uniaxial compressive strength prediction through a new technique based on gene expression programming", Neural Comput Appl, 30(11), pp. 3523-3532 (2018).
32.    Faradonbeh R.S., Monjezi M. "Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms", Eng Comput-Germany, 33(4), pp. 835-851 (2017).
33.    Mousavi S.M., Aminian P., Gandomi A.H., et al. "A new predictive model for compressive strength of HPC using gene expression programming", Adv Eng Softw, 45(1), pp. 105-114 (2012).
34.    Tiryaki B. "Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees", Eng Geology, 99(1-2), pp. 51-60 (2008).
35.    Sayadi A.R., Khalesi M.R., Borji M.K. "A parametric cost model for mineral grinding mills", Miner Eng, 55, pp. 96-102 (2014).
36.    Sayadi A.R., Lashgari A., Paraszczak J.J. "Hard-rock LHD cost estimation using single and multiple regressions based on principal component analysis", Tunn undergr sp tech, 27(1), pp. 133-141 (2012).
37.    Kaiser H.F. "An index of factorial simplicity", Psychometrika, 39(1), pp. 31-36 (1974).
38.    Al-Mosawe A., Kalfat R., Al-Mahaidi R. "Strength of CFRP-steel double strap joints under impact loads using genetic programming", Compos Struct, 160, pp. 1205-1211 (2017).
39.    Manouchehrian A., Sharifzadeh M., Moghadam R.H. "Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics", Int. J. Min. Sci. Technol, 22(2), pp. 229-236 (2012).
40.    Hamby D. "A review of techniques for parameter sensitivity analysis of environmental models", Environ monit assess, 32(2), pp. 135-154 (1994).
Volume 27, Issue 6 - Serial Number 6
Transactions on Nanotechnology (F)
November and December 2020
Pages 3399-3411
  • Receive Date: 22 March 2019
  • Revise Date: 07 February 2020
  • Accept Date: 01 June 2020