REFERENCES:
[1] Elia, N. “When Bode meets Shannon: Control-oriented feedback communication schemes”’, IEEE Trans. Automat. Contr.,
49(9), pp. 1477-1488, (2004).
[2] Zhan, X., Guan, Z., Zhang, X. and Yuan, F. “Best tracking performance of networked control systems based on communication constraints”. Asian Journal of Control, 16(4), pp. 1155-1163, (2014).
[3] Zhan, X., Guan, Z., Zhang, X. and Yuan, F. “Optimal tracking performance and design of networked control systems with
packet dropout”’.Journal of the Franklin Institute, 350(10), pp. 3205-3216, (2013).
[4] Zhan, XS, Wu, J., Jiang, T. and Jiang, XW. “Optimal performance of networked control systems under the packet dropout and channel noise”’. ISA Trans., (2015).
[5] Diwadkar, A., and Vaidya, U. “Limitation for nonlinear observation over erasure channel”. IEEE Transactions on Automatic
Control, 58(2), pp. 454 - 459, (2013).
[6] Quevedo, DE. and Jurado, I. “Stability of sequence-based control with random delays and dropouts”. IEEE Transactions on Automatic Control, pp. 1296-1302, (2017).
[7] Martins, N. C., Dahleh, A., and Elia, N. “Feedback stabilization of uncertain systems in the presence of a direct link”, IEEE Trans. Automat. Contr., 51(3), pp. 438-447, (2006).
[8] Minero, P., Coviello, L. and Franceschetti, M. “Stabilization over Markov feedback channels: The general case”’, IEEE Trans. Automat. Contr., 58(2), pp. 349-362, (2013).
[9] Nair, G. N., Evans, R. J., Mareels, I. M. Y. and Moran, W. “Topological feedback entropy and nonlinear stabilization”, IEEE Trans. Automat. Contr., 49(9), pp. 1585-1597, (2004).
[10] Nair, G. N. and Evans, R. J. “Stabilizability of stochastic linear systems with finite feedback data rates”, SIAM J. Control Optimization, 43(3), pp. 413-436, (2004).
[11] Tatikonda, S. and Mitter, S. “Control under communication constraints”, IEEE Trans. Automat. Contr., 49(7), pp. 1056- 1068, (2004).
[12] Charalambous, C. D. and Farhadi, A. “LQG optimality and separation principle for general discrete time partially observed stochastic systems over finite capacity communication channels”,Automatica, 44(12), pp. 3181-3188, (2008).
[13] Charalambous, C. D., Farhadi, A. and Denic, S. Z. “Control of continuous-time linear Gaussian systems over additive Gaussian wireless fading channels: A separation principle”, IEEE Trans. Automat. Contr., 53(4), pp. 1013-1019, (2008).
[14] Farhadi, A. “Stability of linear dynamics systems over the packet erasure channel: A co-design approach”, International
Journal of Control, 88(12), pp. 2488-2498, (2015).
[15] Farhadi, A. “Feedback channel in linear noiseless dynamics systems controlled over the packet erasure network”, International Journal of Control, 88(8), pp. 1490-1503, (2015).
[16] Farhadi, A., Domun, J. and Canudas de Wit, C. “A supervisory control policy over an acoustic communication network”,
International Journal of Control, 88(5), 946-958, (2015).
[17] Minero, P., Franceschetti, M., Dey, S., and Nair, G. N. “Data rate theorem for stabilization over time-varying feedback channels”, IEEE Trans. Automat. Contr., 54(2), pp. 243-255, 2009.
[18] Zaidi, A. A., Oechtering, T. J. and Yuksel, S. “Stabilization of linear systems over Gaussian networks”, IEEE Trans. Automat. Contr., 59(9), pp. 2369 - 2384, (2014).
[19] Zaidi, A. A., Yuksel, S., Oechtering, T. J. and Skoglund, M. “On the tightness of linear policies for stabilization of linear systems over Gaussian networks”, Systems and Control Letters, 88, pp. 32 - 38, (2016).
[20] Elia, N. and Eisenbeis, J. N. “Limitations of linear control over packet drop networks”, IEEE Trans. Automat. Contr., 56(4), pp. 826-841, (2011).
[21] Canudas de Wit, C., Gomez-Estern, F. and Rodrigues Rubio, F. “Delta-modulation coding redesign for feedback-controlled systems”, IEEE Trans. on Industrial Electronics, 56(7), pp. 2684-2696, (2009).
[22] Braslavsky, J. H., Middleton, R. H. and Freudenberg, J. S. “Feedback stabilisation over signal-to-noise ratio constrained channels”, IEEE Trans. Automat. Contr., 52(8), pp. 1391-1403, (2007).
[23] Sanjeroon, V., Farhadi, A., Motahari, A and Khalaj, B. H. “Estimation of nonlinear dynamic systems over communication channels”, IEEE Transactions on Automatic Control, 63(9), pp. 3024 - 3031, (2018).
[24] Sanjeroon, V. Farhadi, A., Khalaj, B. and Motahari, A. “Estimation and stability over AWGN channel in the presence of fading, noisy feedback channel and different sample rates”, Systems and Control Letters, 123, pp. 75 - 84, (2019).
[25] Farhadi, A. and Ahmed, N. U. “Suboptimal decentralized control over noisy communication channels”, Systems and Control Letters, 60, pp. 282-293, (2011).
[26] Farhadi, A. and Charalambous, C. D. “Stability and reliable data reconstruction of uncertain dynamics systems over finite
capacity channels”, Automatica, 46(5), pp. 889-896, (2010).
[27] Farhadi, A. “Sub-optimal control over AWGN communication network”, European Journal of Control, 37, pp. 27 - 33, (2017).
[28] Li, Y., Chen, J., Tuncel, E. and Su, W. “MIMO control over additive white noise channels: Stabilization and tracking by LTI controllers”, IEEE Trans. Automat. Contr., 61(5), pp. 1281-1296, (2016).
[29] Parsa, A. and Farhadi, A. “Reference tracking of nonlinear dynamic systems over AWGN channel using describing function”, Scientia Iranica, 26(3), pp. 1727 - 1735, (2019).
[30] Liang, X. and Xu, J. “Control for networked control systems with remote and local controllers over unreliable communication channel”, Automatica, 98, pp. 86 -94, (2018).
[31] Imer, O. C., Yuksel, S. and Basar, T. “Optimal control of LTI systems over unreliable communication link”, Automatica, 42(9), pp. 1429 - 1439, (2006).
[32] Slotine, J. J. and Li, W. “Applied Nonlinear Control”, Prentice-Hall, (1991).
[33] Kwakernaak, H. and Sivan, P. “Linear Optimal Control Systems”, Wiley-Interscience, (1972).
[34] Canudas de Wit, C., Sicilian, B. and Bastin, G. “Theory of Robot Control”, Springer - Verlag, (1996).
[35] Oriolo, G., De Luca, A. and Vendittelli, M. “WMR control via dynamic feedback linearization: Design, implementation, and experimental validation”, IEEE Trans. on Control Systems Technology, 10(6), pp. 835-852, (2002).
[36] Parsa, A. and Farhadi, A. “Measurement and control of nonlinear dynamic systems over the Internet (IoT): Applications in remote control of autonomous vehicles”, Automatica, 95, pp. 93 - 103, (2018).
[37] Jing, X. and Lang, Z. “Frequency domain analysis and design of nonlinear systems based on Volterra series expansion -
A parametric characteristic approach”, Springer International Publishing Switzerland, (2015).
[38] Rugh, W. J. “Nonlinear System Theory: The Volterra/Wiener Approach”, Baltimore, MD: The Johns Hopkins Univ. Press, (1981).
[39] Worden, K. and Tomlinson, G. R. “Nonlinearity In Structural Dynamics: Detection, Identication And Modeling”, Bristol, U.K.: Institute of Physics, (2001).
[40] George, D. A. “Continuous Nonlinear Systems”, MIT Research Lab. Electronics, Cambridge, MA, Tech. Rep. 355, (1959).