Tele-operation of autonomous vehicles over additive white Gaussian noise channel

Document Type : Article

Authors

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

This paper is concerned with the tele-operation of autonomous vehicles over analog Additive White Gaussian Noise (AWGN) channel, which is subject to transmission noise and power constraint. The nonlinear dynamic of autonomous vehicle is described by the unicycle model and is cascaded with a bandpass filter acting as encoder. Using the describing function method, the nonlinear dynamic of autonomous vehicle is represented by an approximate linear system. Then, the available results for linear control over analog AWGN channel are extended to account for linear continuous time systems with non - real valued and multiple real valued eigenvalues and for tracking a non-zero reference signal. Subsequently, by applying the extended results on the describing function of autonomous vehicles, a mean square control technique including an encoder, decoder and a controller is presented for reference tracking of the tele-operation of autonomous vehicles over AWGN channel. The satisfactory performance of the proposed control technique is illustrated by computer simulations.

Keywords


REFERENCES:
[1] Elia, N. “When Bode meets Shannon: Control-oriented feedback communication schemes”’, IEEE Trans. Automat. Contr.,
49(9), pp. 1477-1488, (2004).
[2] Zhan, X., Guan, Z., Zhang, X. and Yuan, F. “Best tracking performance of networked control systems based on communication constraints”. Asian Journal of Control, 16(4), pp. 1155-1163, (2014).
[3] Zhan, X., Guan, Z., Zhang, X. and Yuan, F. “Optimal tracking performance and design of networked control systems with
packet dropout”’.Journal of the Franklin Institute, 350(10), pp. 3205-3216, (2013).
[4] Zhan, XS, Wu, J., Jiang, T. and Jiang, XW. “Optimal performance of networked control systems under the packet dropout and channel noise”’. ISA Trans., (2015).
[5] Diwadkar, A., and Vaidya, U. “Limitation for nonlinear observation over erasure channel”. IEEE Transactions on Automatic
Control, 58(2), pp. 454 - 459, (2013).
[6] Quevedo, DE. and Jurado, I. “Stability of sequence-based control with random delays and dropouts”. IEEE Transactions on Automatic Control, pp. 1296-1302, (2017).
[7] Martins, N. C., Dahleh, A., and Elia, N. “Feedback stabilization of uncertain systems in the presence of a direct link”, IEEE Trans. Automat. Contr., 51(3), pp. 438-447, (2006).
[8] Minero, P., Coviello, L. and Franceschetti, M. “Stabilization over Markov feedback channels: The general case”’, IEEE Trans. Automat. Contr., 58(2), pp. 349-362, (2013).
[9] Nair, G. N., Evans, R. J., Mareels, I. M. Y. and Moran, W. “Topological feedback entropy and nonlinear stabilization”, IEEE Trans. Automat. Contr., 49(9), pp. 1585-1597, (2004).
[10] Nair, G. N. and Evans, R. J. “Stabilizability of stochastic linear systems with finite feedback data rates”, SIAM J. Control Optimization, 43(3), pp. 413-436, (2004).
[11] Tatikonda, S. and Mitter, S. “Control under communication constraints”, IEEE Trans. Automat. Contr., 49(7), pp. 1056- 1068, (2004).
[12] Charalambous, C. D. and Farhadi, A. “LQG optimality and separation principle for general discrete time partially observed stochastic systems over finite capacity communication channels”,Automatica, 44(12), pp. 3181-3188, (2008).
[13] Charalambous, C. D., Farhadi, A. and Denic, S. Z. “Control of continuous-time linear Gaussian systems over additive Gaussian wireless fading channels: A separation principle”, IEEE Trans. Automat. Contr., 53(4), pp. 1013-1019, (2008).
[14] Farhadi, A. “Stability of linear dynamics systems over the packet erasure channel: A co-design approach”, International
Journal of Control, 88(12), pp. 2488-2498, (2015).
[15] Farhadi, A. “Feedback channel in linear noiseless dynamics systems controlled over the packet erasure network”, International Journal of Control, 88(8), pp. 1490-1503, (2015).
[16] Farhadi, A., Domun, J. and Canudas de Wit, C. “A supervisory control policy over an acoustic communication network”,
International Journal of Control, 88(5), 946-958, (2015).
[17] Minero, P., Franceschetti, M., Dey, S., and Nair, G. N. “Data rate theorem for stabilization over time-varying feedback channels”, IEEE Trans. Automat. Contr., 54(2), pp. 243-255, 2009.
[18] Zaidi, A. A., Oechtering, T. J. and Yuksel, S. “Stabilization of linear systems over Gaussian networks”, IEEE Trans. Automat. Contr., 59(9), pp. 2369 - 2384, (2014).
[19] Zaidi, A. A., Yuksel, S., Oechtering, T. J. and Skoglund, M. “On the tightness of linear policies for stabilization of linear systems over Gaussian networks”, Systems and Control Letters, 88, pp. 32 - 38, (2016).
[20] Elia, N. and Eisenbeis, J. N. “Limitations of linear control over packet drop networks”, IEEE Trans. Automat. Contr., 56(4), pp. 826-841, (2011).
[21] Canudas de Wit, C., Gomez-Estern, F. and Rodrigues Rubio, F. “Delta-modulation coding redesign for feedback-controlled systems”, IEEE Trans. on Industrial Electronics, 56(7), pp. 2684-2696, (2009).
[22] Braslavsky, J. H., Middleton, R. H. and Freudenberg, J. S. “Feedback stabilisation over signal-to-noise ratio constrained channels”, IEEE Trans. Automat. Contr., 52(8), pp. 1391-1403, (2007).
[23] Sanjeroon, V., Farhadi, A., Motahari, A and Khalaj, B. H. “Estimation of nonlinear dynamic systems over communication channels”, IEEE Transactions on Automatic Control, 63(9), pp. 3024 - 3031, (2018).
[24] Sanjeroon, V. Farhadi, A., Khalaj, B. and Motahari, A. “Estimation and stability over AWGN channel in the presence of fading, noisy feedback channel and different sample rates”, Systems and Control Letters, 123, pp. 75 - 84, (2019).
[25] Farhadi, A. and Ahmed, N. U. “Suboptimal decentralized control over noisy communication channels”, Systems and Control Letters, 60, pp. 282-293, (2011).
[26] Farhadi, A. and Charalambous, C. D. “Stability and reliable data reconstruction of uncertain dynamics systems over finite
capacity channels”, Automatica, 46(5), pp. 889-896, (2010).
[27] Farhadi, A. “Sub-optimal control over AWGN communication network”, European Journal of Control, 37, pp. 27 - 33, (2017).
[28] Li, Y., Chen, J., Tuncel, E. and Su, W. “MIMO control over additive white noise channels: Stabilization and tracking by LTI controllers”, IEEE Trans. Automat. Contr., 61(5), pp. 1281-1296, (2016).
[29] Parsa, A. and Farhadi, A. “Reference tracking of nonlinear dynamic systems over AWGN channel using describing function”, Scientia Iranica, 26(3), pp. 1727 - 1735, (2019).
[30] Liang, X. and Xu, J. “Control for networked control systems with remote and local controllers over unreliable communication channel”, Automatica, 98, pp. 86 -94, (2018).
[31] Imer, O. C., Yuksel, S. and Basar, T. “Optimal control of LTI systems over unreliable communication link”, Automatica, 42(9), pp. 1429 - 1439, (2006).
[32] Slotine, J. J. and Li, W. “Applied Nonlinear Control”, Prentice-Hall, (1991).
[33] Kwakernaak, H. and Sivan, P. “Linear Optimal Control Systems”, Wiley-Interscience, (1972).
[34] Canudas de Wit, C., Sicilian, B. and Bastin, G. “Theory of Robot Control”, Springer - Verlag, (1996).
[35] Oriolo, G., De Luca, A. and Vendittelli, M. “WMR control via dynamic feedback linearization: Design, implementation, and experimental validation”, IEEE Trans. on Control Systems Technology, 10(6), pp. 835-852, (2002).
[36] Parsa, A. and Farhadi, A. “Measurement and control of nonlinear dynamic systems over the Internet (IoT): Applications in remote control of autonomous vehicles”, Automatica, 95, pp. 93 - 103, (2018).
[37] Jing, X. and Lang, Z. “Frequency domain analysis and design of nonlinear systems based on Volterra series expansion -
A parametric characteristic approach”, Springer International Publishing Switzerland, (2015).
[38] Rugh, W. J. “Nonlinear System Theory: The Volterra/Wiener Approach”, Baltimore, MD: The Johns Hopkins Univ. Press, (1981).
[39] Worden, K. and Tomlinson, G. R. “Nonlinearity In Structural Dynamics: Detection, Identication And Modeling”, Bristol, U.K.: Institute of Physics, (2001).
[40] George, D. A. “Continuous Nonlinear Systems”, MIT Research Lab. Electronics, Cambridge, MA, Tech. Rep. 355, (1959).