Entropy generation analysis of peristaltic flow of magneto-nanoparticles suspended in water under second-order slip conditions

Document Type : Article


1 - Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan. - Nonlinear and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

2 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

3 Nonlinear and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia


Here consideration is given to the peristalsis of magneto- nanoparticles suspended in water. Explicitly water nanofluid is utilized for two-dimensional flow in a symmetric channel with complaint walls. Uniform magnetic field is applied. Temperature equation is arranged for viscous dissipation. Second order velocity and thermal slip conditions are utilized. Small Grashof number leads to perturbation solution. Examination of entropy generation is also carried out in this study. Maxwell and Hamilton-Crosser models are used. Analysis is based on the comparative study of these two models representing the cylindrical and spherical shaped particles. Graphs for velocity, temperature, entropy generation and Bejan numbers are plotted under the influence of sundry variables. Streamlines are also plotted for the sake of trapping phenomenon.


1. Choi, S. U. S. “Enhancing thermal conductivity of the fluids with nanoparticles”, ASME Fluids Eng. Div., 231, pp. 99-105 (1995).
2.    Maxwell, J. C. “A Treatise on Electricity and Magnetism”, 2nd Edition, pp. 435-441 Oxford University Press, Cambridge (1904).
3.    Hamilton, R. L. and Crosser, O. K. “Thermal conductivity of heterogeneous two component systems”, EC Fundam., 1, pp. 187-191 (1962).
4.    Buongiorno, J. “Convective transport in nanofluids”, ASME J. Heat Transfer, 128, pp. 240-250 (2006).
5.    Mahanthesh, B. Gireesha, B. J. Animasaun, I. L. et al. “MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source”, Phys. Scr., 94, 085214 (2019).
6.    Hsiao, K. L. “Micropolar Nanofluid Flow with MHD and Viscous Dissipation Effects Towards a Stretching Sheet with Multimedia Feature”, Int. J. Heat Mass Transfer, 112, pp. 983-990 (2017).
7.    Makinde, O. D. Mahanthesh, B. Gireesha, B. J. et al. “MHD nanofluid flow past a rotating disk with thermal radiation in the presence of aluminum and titanium alloy nanoparticles”, Defect Diffusion Forum, 384, pp. 69-79 (2018).
8.    Hsiao, K. L. “Stagnation Electrical MHD Nanofluid Mixed Convection with Slip Boundary on a Stretching Sheet”, Applied Thermal Engineering, 98, pp. 850-861 (2016).
9.    Mahanthesh, B. Gireesha, B. J. Manjunatha, S. et al. “Effect of viscous dissipation and Joule heating on three-dimensional mixed convection flow of nano fluid over a non-linear stretching sheet in presence of solar radiation”, J. Nanofluids, 6, pp. 735-742 (2017).
10.    Hayat, T. Haider, F. Muhammad, T. et al. “Darcy-Forchheimer flow of carbon nanotubes due to a convectively heated rotating disk with homogeneous--heterogeneous reactions”, J. Thermal Analysis Calorimetry, 137, pp. 1939-1949 (2019).
11.    Hsiao, K. L. “To Promote Radiation Electrical MHD Activation Energy Thermal Extrusion Manufacturing System Efficiency by Using Carreau-Nanofluid with Parameters Control Method”, Energy, 130, pp. 486-499 (2017).
12.    Mahanthesh, B. Gireesha, B. J. Shehzad, S. A. et al. “Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition”, Physica B, 537, pp. 98-104 (2018).
13.    Abbasi, F. M. Hayat, T. Alsaadi, F. et al. “MHD peristaltic transport of spherical and cylindrical magneto-nanoparticles suspended in water”, AIP Advances, 5, 077104 (2015).
14.    Latham, T. W. “Fluid motion in a peristaltic pump”, MS Thesis, MIT, Cambridge, MA (1966).  
15.    Shapiro, A. H. “Pumping and retrograde diffusion in peristaltic waves, In Proc. Workshop Ureteral Reftm Children”, Nat. Acad. Sci., Washington, DC, 1,  pp. 109-126 (1967).
16.    Weinberg, S. L. “Theoretical and experimental treatment of peristaltic pumping and its relation to ureteral function”, Ph.D. Thesis, MIT, Cambridge, MA, (1970).
17.    Srinivas, S. and Kothandapani, M. “Peristaltic transport in an asymmetric channel with heat transfer - A note”, Int. Commun. Heat Mass Transfer, 35, pp. 514-522 (2008).
18.    Hina, S. Mustafa, M. Hayat, T. et al.  “Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine”, Computer Methods Programs Biomedicine, 135, pp. 89-100 (2016).
19.    Bhatti, M. M. Zeeshan, A. Ijaz, N. et al. “Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct”, Eng. Sci. Technol., Int. J., 20, pp. 1129-1139 (2017).
20.    Shit, G. C. and Ranjit, N. K. “Role of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: Application to digestive system”, J. Mol. Liq., 221, pp. 305-315 (2016).
21.    Nawaz, S. Hayat, T. and Alsaedi, A. “Analysis of entropy generation in peristalsis of Williamson fluid in curved channel under radial magnetic field”, Computer Methods Programs Biomedicine, 180, 105013 (2019).
22.    Tripathi, D. Bhushan, S. Bég, O. A. “Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis”, Alex. Eng. J., 57, pp. 1349-1359 (2018).
23.    Yasmeen, S. Asghar, S. Anjum, H. J. et al. “Analysis of Hartmann boundary layer peristaltic flow of Jeffrey fluid: Quantitative and qualitative approaches”, Comm. Nonlinear Science Numerical Simulation, 76, pp. 51-65 ( 2019).
24.    Hayat, T. Ayub, S. and Alsaedi, A. “Homogeneous-heterogeneous reactions in curved channel with porous medium”, Results Phys., 9, pp. 1455-1461 (2018).
25.    Prakash, J. Sharma, A. and Tripathi, D. “Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel”, J. Mol. Liqs., 249, pp. 843-855 (2018).
26.    Hayat, T. Akram, J. Alsaedi, A. et al. “Endoscopy and homogeneous-heterogeneous reactions in MHD radiative peristaltic activity of Ree-Eyring fluid”, Results Phys., 8, pp. 481-488 (2018).
27.    Ellahi, R. and Hussain, F. “Simultaneous effects of MHD and partial slip on peristaltic flow of Jeffrey fluid in a rectangular duct”, J. Magn. Magn. Mater., 393, pp. 284-292 (2015).
28.    Hayat, T. Nawaz, S. Alsaedi, A. et al. “Mixed convective peristaltic flow of water based nanofluids with Joule heating and convective boundary conditions”, PLoS ONE, 11   e0153537 (2016).
29.    Akbar, N. S. Khan, L. A. Khan, Z. H. et al. “Natural Propulsion with Lorentz Force and Nanoparticles in a Bioinspired Lopsided Ciliated Channel”, J. B. Eng., 14, pp. 172-181 (2017).
30.    Abbasi, F. M. Gul, M. and Shehzad, S. A. “Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity”, Physica E: Low-dimensional systems nanostructures, 99, pp. 275-284 (2018).
31.    Bhatti, M. M. Zeeshan, A. Ellahi, R. et al. “Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium”, Advanced Powder Technology, 29, pp. 1189-1197 (2018).
32.    Akbar, N. S. and Butt, A. W. “Entropy generation analysis for the peristaltic flow of Cu-water nanofluid in a tube with viscous dissipation”, J. Hydrodynamics, 29, pp. 135-143 (2017).
33.    Mosayebidorcheh, S. and Hatami, M. “Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel”, Int. J. Heat Mass Trans., 126, pp.  790-799 (2018).
34.    Hayat, T. Nawaz, S. Alsaedi, A. et al. “Impact of second-order velocity and thermal slips in the mixed convective peristalsis with carbon nanotubes and porous medium”, J. Mol. Liq., 221, pp. 434-442 (2016).
35.    Bhatti, M. M. Zeeshan, A. Ellahi, R. et al.  “Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium”, Chinese J. Physics, 58, pp. 222-234 (2019).
36.    Abbasi, F. M. Hayat, T. and Ahmad, B. “Peristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: Applications in drug delivery”, J. Mol. Liq., 207, pp.248-255 (2015).
37.    Bejan, A. “Second law analysis in heat transfer”, Energy, 5, pp.720-732 (1980).
38.    Sheikholeslami, M. “New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media”, Computer Methods Applied Mechanics Engineering, 344, pp. 319-333 (2019).
39.    Nawaz , S. Hayat, T. and Alsaedi, A. “Numerical study for peristalsis of Sisko nanomaterials with entropy generation,” J. Thermal Analysis Calorimetry, https://doi.org/10.1007/s10973-019-08546-5 (2019).
40.    Hayat, T. Rafiq, M. Ahmad, B. et al.  “Entropy generation analysis for peristaltic flow of nanoparticles in a rotating frame”, Int. J. Heat Mass Trans., 108, pp. 1775-1786 (2017).