References:
[1]. Stoneley, R. “Elastic waves at the surface of separation of two solids”, Proc. of Royal Soc. Lond., 106, pp. 416-428 (1924).
[2]. Ashour, A.S. “Theoretical investigation of Stoneley wave attenuation and dispersion in a fluid filled fracture in transversely isotropic formation”, ARI- An Int. J. for Physics and Eng. Sci., 51, pp. 254-257 (1999).
[3]. Abo-Dahab, S.M. “Propagation of Stoneley waves in magneto-thermoelastic materials with voids and two relaxation times”, J. of Vib. and Cont., 21, pp. 1144-1153 (2015).
[4]. Tiwana, M.H., Ahmed, S., Mann, A.B. and Naqvi, Q.A. “Point source diffraction from a semi-infinite perfect electromagnetic conductor half plane”, Optik, 135, pp. 1–7 (2017).
[5]. Sanjeev, S.A., Saroj, P.K. and Paswan, B. “Shear waves in a heterogeneous fiber-reinforced layer over a half-space under gravity”, Int. J. of Geomech., 15(4), pp. 014-048 (2014).
[6]. Alam, P., Kundu, S. and Gupta, S. “Love-type wave propagation in a hydrostatic stressed magneto-elastic transversely isotropic strip over an inhomogeneous substrate caused by a disturbance point source”, J. of Intl. Material Sys. and Struc., 29, pp. 2508-2521 (2018).
[7]. Kundu, S., Alam, P. and Gupta, S. “Shear waves in magneto-elastic transversely isotropic (MTI) layer bonded between two heterogeneous elastic media”, Mech. of Adv. Materials and Struc., 26, pp. 407-415 (2019).
[8]. Singh, B. “Wave propagation in a rotating transversely isotropic two-temperature generalized thermoelastic medium without dissipation”, Int. J. of Therm., 2016. In Press, DOI: 10.1007/s10765-015-2015-z.
[9]. Vishwakarma, S.K. and Xu, R. “Rayleigh wave dispersion in an irregular sandy Earth’s crust over orthotropic mantle”, Appl. Math. Modelling, 40, pp. 8647-8659 (2016).
[10]. Singh, S.S. “Love wave at a layer medium bounded by irregular boundary surfaces”, J. of Vib. and Cont., 17, pp. 789-795 (2011).
[11]. Alam, P., Kundu, S., Gupta, S. “Dispersion study of SH-wave propagation in an irregular magneto-elastic anisotropic crustal layer over an irregular heterogeneous half-space”, J. of King Saud University –Sci., 30(3), pp. 301-310 (2016).
[12]. Saroj, P.K., Sanjeev, S.A. and Chattopadhyay, A. “Dynamic response of corrugation and rigid boundary surface on Love-type wave propagation in orthotropic layered medium”, J. of Porous Media, 21, pp. 1163-1176 (2018).
[13]. Addy, S.K. and Chakraborty, N.R. “Rayleigh waves in a viscoelastic half-space under initial hydrostatic stress in presence of the temperature field”, Int. J. of Math. and Math. Sci., 24, pp. 3883–3894 (2005).
[14]. Alam, P., Kundu, S., Gupta, S. “Effect of magneto-elasticity, hydrostatic stress and gravity on Rayleigh waves in a hydrostatic stressed magneto-elastic crystalline medium over a gravitating half-space with sliding contact”, Mech. Research Comm., 89, pp. 11-17 (2018).
[15]. Alam, P., Kundu, S. and Gupta, S. “Dispersion and attenuation of Love-type waves due to a point source in magneto-viscoelastic layer”, J. of Mech., 34, pp. 801-816 (2018).
[16]. Said, S.M. “Influence of gravity on generalized magnetothermoelastic medium for three-phase-lag model”, J. of Comput. Appl. Math., 291, pp. 142–157 (2016).
[17]. Majhi, S., Pal, P.C. and Kumar, S. “Reflection and transmission of plane SH-waves in an initially stressed inhomogeneous anisotropic dispersion study of SH-wave propagation magnetoelastic medium”, J. of Seism., 21, pp. 155-163 (2016).
[18]. Shaw, S., Biswas, S. and Mukhopadhyay, B. "Rayleigh waves in a thermoorthotropic medium: A dynamic analysis”, Comput. Therm. Sci.: An Int. J., 10, pp. 557-574 (2018).
[19]. Sahu, S.A., Chaudhary, S., Saroj, P.K. and Chattopadhyay, A. “Rayleigh waves in liquid layer resting over an initially stressed orthotropic half-space under self-weight”, Arab. J. of Geosci., 2017. In Press, DOI: 10.1007/s12517-017-2924-1.
[20]. Biot, M.A. “Mechanics of Incremental Deformations”, John Wiley & Sons, Inc., New York (1965).
[21]. Mukhopadhyay, S. “Effects of thermal relaxations on thermoviscoelastic inter- actions in an unbounded body with a spherical cavity subjected to a periodic loading on the boundary”, J. of Therm. Stresses, 23, pp. 675–684 (2000).
[22]. Anderson, D.L. “Elastic wave propagation in layered anisotropic Media”, J. of Geophy. Research, 66, pp. 2953–2963 (1961).
[23]. Rehman, A., Khan, A. and Ali, A. “Rayleigh waves in a rotating transversely isotropic materials”, Elect. J. Tech. Acoustics, pp. 5 (2007).
[24]. Ding, H., Chien, W. and Zhang, I. “Elasticity of Transversely Isotropic Materials”, Springer Sci. and Business Media, 126, pp. 22-23 (2006).