Investigation of harmonic effects in locational marginal pricing and development of a framework for LMP calculation

Document Type : Article

Authors

Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Locational Marginal Pricing (LMP) is arguably the most effective and commonly employed mechanism to provide the most reliable economic signal to market participants. Meanwhile, nodal prices depend on active power losses and transmission congestion which may be affected by harmonics pollution. In the conventional method, power system and loads are assumed linear and nodal prices are obtained by results of optimal power flow (OPF) at the power frequency. Harmonics lead to skin effect and increasing loss. Further, harmonic flowing in branches in a power network occupies transmission capacity. For providing more accurate signals to market participants and achieving more accurate nodal prices, harmonic effects on LMP are investigated and a framework is developed for LMP calculation in a harmonic polluted power system. In this framework, skin effect, losses, and congestion which can be arisen by harmonic pollution are modelled in optimal power flow (OPF) and are considered in LMP calculation. The proposed concept is implemented with 9-bus and 30-bus test systems while nodal price changes are also indicated.

Keywords


References:
 
1.     Schweppe, F. C., Caramanis, M. C., Tabors, R. D., and Bohn, R. E., Spot Pricing of Electricity, Springer US (1988).
2.     Yang, Z., Bose, A., Zhong, H., Zhang, N., Lin, J., Xia, Q., and Kang, C., “LMP Revisited: A Linear Model for the Loss-Embedded LMP”, IEEE Trans. Power Syst., 32(5), pp. 4080–4090 (2017).
3.     Leite da Silva, A. M. and de Carvalho Costa, J. G., “Transmission loss allocation: part I-single energy market”, IEEE Trans. Power Syst., 18(4), pp. 1389–1394 (2003).
4.     Norouzi, H., Abedi, S., Jamalzadeh, R., Rad, M. G., and Hosseinian, S. H., “Modeling and investigation of harmonic losses in optimal power flow and power system locational marginal pricing”, Energy, 68, pp. 140–147 (2014).
5.     Vaishya, S. R. and Sarkar, V., “Implementation of lossy FTRs for perfect risk hedging under the marginal loss pricing”, IET Gener. Transm. Distrib., 11(1), pp. 166–173 (2017).
6.     Vaishya, S. R. and Sarkar, V., “Designing option FTRs for the lossy FTR system”, IET Gener. Transm. Distrib., 12(9), pp. 2132–2139 (2018).
7.     Avinash D. and Chalapathi, B., “MW-Mile method considering the cost of loss allocation for transmission pricing”, 2015 Conf. Power, Control. Commun. Comput. Technol. Sustain. Growth, IEEE, pp. 128–131 (2015).
8.     Mackay, L., Ramirez-Elizondo, L., and Bauer, P., “Current pricing: Avoiding marginal losses in locational marginal prices for DC grids”, 2017 IEEE Manchester PowerTech, IEEE, pp. 1–6 (2017).
9.     Litvinov, E., Zheng, T., Rosenwald, G., and Shamsollahi, P., “Marginal Loss Modeling in LMP Calculation”, IEEE Trans. Power Syst., 19(2), pp. 880–888 (2004).
10.     Shaloudegi, K., Madinehi, N., Hosseinian, S. H., and Abyaneh, H. A., “A Novel Policy for Locational Marginal Price Calculation in Distribution Systems Based on Loss Reduction Allocation Using Game Theory”, IEEE Trans. Power Syst., 27(2), pp. 811–820 (2012).
11.     O’Connell, N., Wu, Q., Østergaard, J., Nielsen, A. H., Cha, S. T., and Ding, Y., “Day-ahead tariffs for the alleviation of distribution grid congestion from electric vehicles”, Electr. Power Syst. Res., 92, pp. 106–114 (2012).
12.     Li, R., Wu, Q., and Oren, S. S., “Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging Management”, IEEE Trans. Power Syst., 29(1), pp. 203–211 (2014).
13.     Huang, S., Wu, Q., Oren, S. S., Li, R., and Liu, Z., “Distribution Locational Marginal Pricing Through Quadratic Programming for Congestion Management in Distribution Networks”, IEEE Trans. Power Syst., 30(4), pp. 2170–2178 (2015).
14.     Hamoud, G. and Bradley, I., “Assessment of Transmission Congestion Cost and Locational Marginal Pricing in a Competitive Electricity Market”, IEEE Trans. Power Syst., 19(2), pp. 769–775 (2004).
15.     Sun, J. and Lo, K. L., “A congestion management method with demand elasticity and PTDF approach”, 2012 47th Int. Univ. Power Eng. Conf., IEEE, pp. 1–6 (2012).
16.     Talacek, P. J. and Watson, N. R., “Marginal pricing of harmonic injections: an analysis of the resulting payments”, IEEE Trans. Power Syst., 17(3), pp. 640–645 (2002).
17.     Aiello, M., Cataliotti, A., Favuzza, S., and Graditi, G., “Theoretical and Experimental Comparison of Total Harmonic Distortion Factors for the Evaluation of Harmonic and Interharmonic Pollution of Grid-Connected Photovoltaic Systems”, IEEE Trans. Power Deliv., 21(3), pp. 1390–1397 (2006).
18.     Kim, K., Suk Song, C., Byeon, G., Jung, H., Kim, H., and Jang, G., “Power Demand and Total Harmonic Distortion Analysis for an EV Charging Station Concept Utilizing a Battery Energy Storage System”, J. Electr. Eng. Technol., 8(5), pp. 1234–1242 (2013).
19.     Hojabri, M. and Toudeshki, A., “Power Quality Consideration for Off-Grid Renewable Energy Systems”, Energy Power Eng., 5(5), pp. 377–383 (2013).
20.     Marini, A., Ghazizadeh, M. S., Mortazavi, S. S., and Piegari, L., “A harmonic power market framework for compensation management of DER based active power filters in microgrids”, Int. J. Electr. Power Energy Syst., 113, pp. 916–931 (2019).
21.     Narimani, M., Hosseinian, S. H., and Vahidi, B., “A Method for Harmonic Power Tracing by Using Upstream and Downstream Distribution Matrices”, Electr. Power Components Syst., 47(13), pp. 1169–1179 (2019).
22.     Chang-Song Li, Zhi-Xuan Bai, Xian-Yong Xiao, Ya-Mei Liu, and Yi Zhang, “Research of harmonic distortion power for harmonic source detection”, 2016 17th Int. Conf. Harmon. Qual. Power, IEEE, pp. 126–129 (2016).
23.     Wu, T., Ping Shum, P., Sun, Y., Huang, T., and Wei, L., “Third Harmonic Generation With the Effect of Nonlinear Loss”, J. Light. Technol., 34(4), pp. 1274–1280 (2016).
24.     Kumar, D. and Zare, F., “Harmonic Analysis of Grid Connected Power Electronic Systems in Low Voltage Distribution Networks”, IEEE J. Emerg. Sel. Top. Power Electron., 4(1), pp. 70–79 (2016).
25.     Mesas, J. J., Sainz, L., and Sala, P., “Statistical Study of Personal Computer Cluster Harmonic Currents from Experimental Measurements”, Electr. Power Components Syst., 43(1), pp. 56–68 (2015).
26.     Bharatwaj, V. N. and Abhyankar, A. R., “Max-min fair financial transmission rights payment-based AC optimal power flow locational marginal price decomposition”, IET Gener. Transm. Distrib., 8(10), pp. 1724–1732 (2014).
27.     Sarkar, V. and Khaparde, S. A., “Optimal LMP decomposition for the ACOPF calculation”, IEEE Trans. Power Syst., 26(3), pp. 1714–1723 (2011).
28.     http://www.caiso.com/23cf/23cfe2c91d880.pdf.
29.     Monica Gokul, C. H. and Sarada, K., “AC optimal power flow calculation for locational marginal pricing”, Indian J. Sci. Technol., 8(17) (2015).
30.     Carpentie, J., “Contribution a l’étude du dispatching économique”, Bull. la Société Française des Electr., 3, pp. 431–447 (1962).
31.     Dommel, H. and Tinney, W., “Optimal Power Flow Solutions”, IEEE Trans. Power Appar. Syst., PAS-87(10), pp. 1866–1876 (1968).
32.     Yang, Z., Zhong, H., Xia, Q., and Kang, C., “Solving OPF using linear approximations: Fundamental analysis and numerical demonstration”, IET Gener. Transm. Distrib., 11(17), pp. 4115–4125 (2017).
33.     Ramo, S. and Whinnery, J. R., Fields and Waves in Modern Radio, Second, John Wiley & Sons, Ltd, New York (1962).
34.     Mahmoud, A. and Shultz, R., “A Method for Analyzing Harmonic Distribution in A.C. Power Systems”, IEEE Trans. Power Appar. Syst., PAS-101(6), pp. 1815–1824 (1982).
35.     Arrillaga, J. and Watson, N. R., Power System Harmonics, John Wiley & Sons, Ltd, Chichester, UK (2003).
36.     Chow, J. H. (Joe H.), Kokotovic╠ü, P. V., and Thomas, R. J., Systems and Control Theory for Power Systems, Springer-Verlag (1995).
37.     “519-2014 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems”, https://standards.ieee.org/standard/519-2014.html.
38.     Alsac, O. and Stott, B., “Optimal Load Flow with Steady-State Security”, IEEE Trans. Power Appar. Syst., PAS-93(3), pp. 745–751 (1974).