N-(2-pyridylmethyl)-L-histidine functionalized Fe3O4 magnetic nanoparticles as an efficient catalyst for synthesis of β-amino ketones

Document Type : Article


1 Department of Chemistry, Payame Noor University, Tehran 9395-3697, Iran

2 Department of Chemistry, University of Maragheh, Maragheh 55181-83111, Iran

3 Department of Physics, Ondokuz Mayis University, TR-55139, Samsun, Turkey

4 Department of Chemistry, University of Maragheh, Maragheh 55181-83111, Iran.; Department of Chemistry, Sharif University of Technology, Tehran, Iran.


N-(2-Pyridylmethyl)-L-histidine functionalized Fe3O4 magnetic nanoparticles (PMHis@Fe3O4 MNPs) efficiently catalyzed three-component Mannich-type reaction of ketones, aromatic aldehydes and anilines, to synthesize β-amino ketones in good to high yields. Mannich adducts were obtained in moderate to high diastereoselectivity, favoring anti isomer. The imidazole moiety of PMHis residue on catalyst plays an important role in the diastereoselectivity. PMHis@Fe3O4 MNPs were prepared via simple coprecipitation from an aqueous solution of Fe2+ and Fe3+ ions using NH4OH in the presence of L-histidine, followed by reductive amination with 2-pyridine carbaldehyde in the presence of NaBH4. Obtained PMHis@Fe3O4 MNPs were characterized by FT-IR, XRD, VSM, BET, TGA, SEM, EDX and TEM analysis.



1. Lelais, G. and Seebach, D. "fi2-amino acids-syntheses, occurrence in natural products, and components of fi-peptides1, 2", Peptide Science: Original Research on Biomolecules, 76(3), pp. 206-243 (2004).
2. Seebach, D., Beck, A.K., and Bierbaum, D.J. "The world of fi-and -peptides comprised of homologated proteinogenic amino acids and other components", Chemistry & Biodiversity, 1(8), pp. 1111-1239 (2004).
3. Tao, R., Yin, Y., Duan, Y., et al. "Fe(OTf)3-catalyzed tandem meyer-schuster rearrangement/intermolecular hydroamination of 3-aryl propargyl alcohols for the synthesis of acyclic fi-Aminoketones", Tetrahedron, 73(13), pp. 1762-1768 (2017).
4. Altmeyer, M., Amtmann, E., Heyl, C., et al. "Betaaminoketones as prodrugs for selective irreversible inhibitors of type-1 methionine aminopeptidases", Bioorganic & Medicinal Chemistry Letters, 24(22), pp. 5310-5314 (2014).
5. Bala, S., Sharma, N., Kajal, A., et al. "Mannich bases: an important pharmacophore in present scenario", International Journal of Medicinal Chemistry, 2014, Article ID 191072 (2014).
6. Roman, G. "Mannich bases in medicinal chemistry and drug design", European Journal of Medicinal Chemistry, 89, pp. 743-816 (2015).
7. Ashok, M., Holla, B.S., and Poojary, B. "Convenient one pot synthesis and antimicrobial evaluation of some new Mannich bases carrying 4-methylthiobenzyl moiety", European Journal of Medicinal Chemistry, 42(8), pp. 1095-1101 (2007).
8. Koksal, M., Gokhan, N., Kupeli, E., et al. "Analgesic and antiin ammatory activities of some new Mannich bases of 5-nitro-2-benzoxazolinones", Archives of Pharmacal Research, 30(4), pp. 419-424 (2007).
9. Pandeya, S.N., Sriram, D., Nath, G., et al. "Synthesis, antibacterial, antifungal and anti-HIV activities of nor floxacin Mannich bases", European Journal of Medicinal Chemistry, 35(2), pp. 249-255 (2000).
10. Edwards, M., Ritter, H., Stemerick, D., et al. "Mannich bases of 4-phenyl-3-buten-2-one. A new class of antiherpes agent", Journal of Medicinal Chemistry, 26(3), pp. 431-436 (1983).
11. Malinka, W., Swiatek, P., Filipek, B., et al. "Synthesis, analgesic activity and computational study of new isothiazolopyridines of Mannich base type", Il Farmaco, 60(11-12), pp. 961-968 (2005).
12. Ivanova, Y., Momekov, G., Petrov, O., et al. "Cytotoxic mannich bases of 6-(3-aryl-2-propenoyl)-2 (3H)-benzoxazolones", European Journal of Medicinal Chemistry, 42(11-12), pp. 1382-1387 (2007).
13. Venkatesan, S., Karthikeyan, N.S., Rathore, R.S., et al. "A mild and efficient one-pot three-component synthesis of anti-fi-amino-carbonyl compounds catalyzed by NH 4 OAc and their anticancer activities", Medicinal Chemistry Research, 23(12), pp. 5086-5101 (2014).
14. Hashemi, M.M., Eftekhari-Sis, B., Abdollahifar, A., et al. "ZrOCl28H2O on montmorillonite K10 accelerated conjugate addition of amines to ff, fi-unsaturated alkenes under solvent-free conditions", Tetrahedron,62(4), pp. 672-677 (2006).
15. Lu, X. and Deng, L. "Asymmetric aza-michael reactions of ff, fi-unsaturated ketones with bifunctional organic catalysts", Angewandte Chemie International Edition, 47(40), pp. 7710-7713 (2008).
16. Azizi, N., Baghi, R., Ghafuri, H., et al. "Silicon tetrachloride catalyzed aza-michael addition of amines to conjugated alkenes under solvent-free conditions", Synlett, 03, pp. 379-382 (2010).
17. Murahashi, S.-I., Kodera, Y., and Hosomi, T. "A novel oxidative ring-opening reaction of isoxazolidines: Syntheses of fi-amino ketones and fi-amino acid esters from secondary amines", Tetrahedron Letters, 29(46), pp. 5949-5952 (1988).
18. Huang, K., Guan, Z.-H., and Zhang, X. "Synthesis of chiral cyclic fi-amino ketones by Ru-catalyzed asymmetric hydrogenation", Tetrahedron Letters, 55(10), pp. 1686-1688 (2014).
19. Savile, C.K., Janey, J.M., Mundorff, E.C., et al.  Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture", Science, 329(5989), pp. 305-309 (2010).
20. Ye, Z. and Dai, M. "An umpolung strategy for the synthesis of fi-aminoketones via copper-catalyzed electrophilic amination of cyclopropanols", Organic Letters, 17(9), pp. 2190-2193 (2015).
21. Eftekhari-Sis, B., Abdollahifar, A., Hashemi, M.M., et al. "Stereoselective synthesis of fi-amino ketones via direct mannich-type reactions, catalyzed with ZrOCl2 8H2O under solvent-free conditions", European Journal of Organic Chemistry, 2006(22), pp. 5152-5157 (2006).
22. Samet, M., Eftekhari-Sis, B., Hashemi, M.M., et al. "Stereoselective synthesis of fi-amino ketones via direct mannich-type reaction catalyzed with", Synthetic Communications., 39(24), pp. 4441-4453 (2009).
23. Eftekhari-Sis, B. and Zirak, M. "ff-Imino esters in organic synthesis: Recent advances", Chemical Reviews, 117(12), pp. 8326-8419 (2017).
24. Arend, M., Westermann, B., and Risch, N. "Modern variants of the Mannich reaction", Angewandte Chemie International Edition, 37(8), pp. 1044-1070 (1998).
25. Cordova, A. "The direct catalytic asymmetric Mannich reaction", Accounts of Chemical Research, 37(2), pp. 102-112 (2004).
26. Arrayas, R.G. and Carretero, J.C. "Catalytic asymmetric direct Mannich reaction: a powerful tool for the synthesis of ff, fi-diamino acids", Chemical Society Reviews, 38(7), pp. 1940-1948 (2009).
27. Eftekhari-Sis, B., Mohajer, S., Zirak, M., et al. "Switching diastereoselectivity of direct Mannich-type reaction of cyclic ketones by polymeric laponite nanoclay catalyst", Journal of the Iranian Chemical Society, 13(4), pp. 609-615 (2016).
28. Zhao, J., Fang, B., Luo, W., et al. "Enantioselective construction of vicinal tetrasubstituted stereocenters by the mannich reaction of silyl ketene imines with isatin-derived ketimines", Angewandte Chemie International Edition, 54(1), pp. 241-244 (2015).
29. Lian, X., Lin, L., Fu, K., et al. "A new approach to the asymmetric Mannich reaction catalyzed by chiral N, N0-dioxide-metal complexes", Chemical Science, 8(2), pp. 1238-1242 (2017).
30. Eftekhari-Sis, B., Akbari, M., Amini, M., et al. "Oxoperoxo tungsten (VI) complex immobilized on Schiff base-modified Fe3O4 magnetic nanoparticles as a heterogeneous catalyst for oxidation of alcohols with hydrogen peroxide", Journal of Coordination Chemistry, 70(2), pp. 328-339 (2017).
31. Eftekhari-Sis, B., Akbari, M., Akbari, A., et al. "Vanadium (V) and tungsten (VI) oxoperoxo-complexes anchored on Fe3O4 magnetic nanoparticles: Versatile and efficient catalysts for the oxidation of alcohols and sulfides", Catalysis Letters, 147(8), pp. 2106-2115 (2017).
32. Eftekhari-Sis, B., Sarvari Karajabad, M., and Haqverdi, S. "Pyridylmethylaminoacetic acid functionalized Fe3O4 magnetic nanorods as an efficient catalyst for the synthesis of 2-aminochromene and 2- aminopyran derivatives", Scientia Iranica, 24(6), pp. 3022-3031 (2017).
33. Zirak, M. and Jamali Garegeshlagi, E. "Picolinimi -doamide-Cu (II) complex anchored on Fe3O4@SiO2 core-shell magnetic nanoparticles: An efficient reusable catalyst for click reaction", Journal of Coordination Chemistry, 71(8), pp. 1168-1179 (2018).
34. Bagherzadeh, M. and Mortazavi-Manesh, A. "Immobilized manganese porphyrin on functionalized magnetic nanoparticles via axial ligation: Efficient and recyclable nanocatalyst for oxidation reactions", Journal of Coordination Chemistry, 68(13), pp. 2347-2360 (2015).
35. Arsalani, N., Fattahi, H., and Nazarpoor, M. "Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent", Express Polym Lett, 4(6), pp. 329-338 (2010).
36. Cui, Z.-M., Jiang, L.-Y., Song, W.-G., et al. "Highyield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithiumion batteries", Chemistry of Materials, 21(6), pp. 1162-1166 (2009).
37. Cheng, K., Peng, S., Xu, C., et al. "Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin", Journal of the American Chemical Society, 131(30), pp. 10637-10644 (2009).
38. Zirak, M., Abdollahiyan, A., Eftekhari-Sis, B., et al. "Carboxymethyl cellulose coated Fe3O4@ SiO2 core-shell magnetic nanoparticles for methylene blue removal: Equilibrium, kinetic, and thermodynamic studies", Cellulose, 25(1), pp. 503-515 (2018).
39. Lian, S., Kang, Z., Wang, E., et al. "Convenient synthesis of single crystalline magnetic Fe3O4 nanorods", Solid State Communications, 127(9-10), pp. 605-608 (2003).