Preparation of Pt-ZSM-5 zeolite membrane catalysts for the isomerization of linear alkane

Document Type : Article

Authors

1 Nanostructure Materials Research Center (NMRC), Sahand University of Technology, Tabriz, P.O. Box 51335/1996, Iran.; Department of Chemical Engineering, Ilam University, Ilam, P.O. Box 69315/516, Iran.

2 Institute on Membrane Technology (ITM), Italian National Research Council (CNR), Via P. Bucci CUBO 17/C, 87030 Arcavacata di Rende (CS), Italy

3 Nanostructure Materials Research Center (NMRC), Sahand University of Technology, Tabriz, P.O. Box 51335/1996, Iran.; Department of Chemical Engineering, Sahand University of Technology, P.O. Box 51335/1996, Tabriz, Iran.

4 Department of Chemical Engineering, Sahand University of Technology, P.O. Box 51335/1996, Tabriz, Iran.; Reactor and Catalyst Research Center (RCRC), Sahand University of Technology, Tabriz, P.O. Box 51335/1996, Iran.

5 Department of Chemical Engineering, Ilam University, Ilam, P.O. Box 69315/516, Iran.

Abstract

A ZSM-5 supported membrane was synthesized by secondary growth method. The Pt-ZSM5 membrane was prepared by impregnation method. The membrane was characterized by single gas permeation step at room temperature. The isomerization of n-pentane was chosen as a probe reaction for evaluating the catalytic performance of the membrane. In particular, the effect of the space velocity and the time on stream were considered. After the catalytic tests, the membrane was characterized by SEM, EDX and XRD. N2 permeance for the membrane, after calcination, was equal to 2.9 × 10-7 mol/m2.s.Pa indicating a coverage of the larger support pores by the zeolite crystals. This results was also confirmed by the SEM investigation. In addition, XRD analysis showed as the ZSM-5 was the desired zeolite-type. During the catalytic tests, it was observed a decrease of the nC5 conversion and an increase of the iC5 selectivity with WHSV. The nC5 conversion was decreased from 2.5 to less than 0.5, with an enhancement in weight hourly space velocity (WHSV), while the selectivity increases from 30 to over 70. On the other hand, it's conversion on catalyst enhanced from 10% to approximately 38%, with an increase in the reaction temperature from 250 to 450°C.

Keywords


References:
1. Al-Kandari, H., Al-Kandari, S., Al-Kharafi, F., and Katrib, A. "Molybdenum-based catalysts for upgrading light naphtha linear hydrocarbon compounds", Energy & Fuels, 23(12), pp. 5737-5742 (2009).
2. Ramos, M.J., Gomez, J.P., Dorado, F., Sanchez, P., and Valverde, J.L. "Hydroisomerization of a refinery naphtha stream over agglomerated Pd zeolites", Ind. Eng. Chem. Res., 44(24), pp. 9050-9058 (2005).
3. Villegas, J.I., Kumar, N., Heikkila, T., Lehto, V. P., Salmi, T., and Murzin, D.Y. "Isomerization of n-butane to isobutane over Pt-modified Beta and ZSM-5 zeolite catalysts: Catalyst deactivation and regeneration", Chem. Eng. J., 120(1-2), pp. 83-89 (2006).
4. Dhar, A., Vekariya, R.L., and Sharma, P. "Kinetics and mechanistic study of n-alkane hydroisomerization reaction on Pt-doped -alumina catalyst", Petroleum, 3(4), pp. 489-495 (2017).
5. Yoshioka, C.M.N., Garetto, T., and Cardoso, D. "nhexane isomerization on Ni-Pt catalysts/supported on HUSY zeolite: The in
uence from a metal content", Catal. Today, 107-108(0), pp. 693-698 (2005).
6. Noh, G., Shi, Z., Zones, S.I., and Iglesia, E. "Isomerization and fi-scission reactions of alkanes on bifunctional metal-acid catalysts: Consequences of confinement and diffusional constraints on reactivity and selectivity", J. Catal., 368, pp. 389-410 (2018).
7. Baudot, A. and Bournay, L. "Integration de membranes zeolithes MFI dans le procede d'isomerisation des essences legeres", Oil Gas Sci. Technol. - Rev. IFP, 64(6), pp. 759-771 (2009).
8. Ejtemaei, M., Charchi Aghdam, N., Babaluo, A.A., Tavakoli, A., and Bayati, B. "n-pentane isomerization over Pt-Al promoted sulfated zirconia nanocatalyst", Sci. Iran., 24(3), pp. 1264-1271 (2017).
9. Daramola, M.O., Deng, Z., Pera-Titus, M., Giroir-Fendler, A., Miachon, S., Burger, A.J., Lorenzen, L., and Guo, Y. "Nanocomposite MFI-alumina membranes prepared via pore-pugging synthesis: Application as packed-bed membrane reactors for m-xylene isomerization over a Pt-HZSM-5 catalyst", Catal. Today, 156(3-4), pp. 261-267 (2010).
10. Li, K., Ceramic Membranes for Separation and Reaction, Wiley (2007).
11. Aboul-Gheit, A.K., Gad, F.K., Abdel-Aleem, G.M., El-Desouki, D.S., Abdel-Hamid, S.M., Ghoneim, S.A., and Ibrahim, A.H. "Pt, Re and Pt-Re incorporation in sulfated zirconia as catalysts for n-pentane isomerization", Egypt. J. Pet., 23(3), pp. 303-314 (2014).
12. Setiabudi, H.D., Jalil, A.A., Triwahyono, S., Kamarudin, N.H.N., and Mukti, R.R. "IR study of iridium bonded to perturbed silanol groups of Pt- HZSM5 for n-pentane isomerization", Appl. Catal., A, 417-418, pp. 190-199 (2012).
13. Setiabudi, H.D., Jalil, A.A., Triwahyono, S., Kamarudin, N.H.N., and Jusoh, R. "Ir/Pt-HZSM5 for n-pentane isomerization: Effect of Si/Al ratio and reaction optimization by response surface methodology", Chem. Eng. J., 217, pp. 300-309 (2013).
14. Deshayes, A.L., Miro, E.E., and Horowitz, G.I. "Xylene isomerization in a membrane reactor: Part II. Simulation of an industrial reactor", Chem. Eng. J., 122(3), pp. 149-157 (2006).
15. Zhang, C., Hong, Z., Chen, J., Gu, X., Jin, W., and Xu, N. "Catalytic MFI zeolite membranes supported on ff-Al2O3 substrates for m-xylene isomerization", J. Membr. Sci., 389(0), pp. 451-458 (2012).
16. Anbia, M. and Aghaei, M. "Study of the effect of organic binders on 13X zeolite agglomeration and their CO2 adsorption properties", Sci. Iran., 26(3), pp. 1497-1504 (2019).
17. Medrano, J.A., Garofalo, A., Donato, L., Basile, F., De Santo, M.P., Gallucci, F., Cofone, F., Ciuchi, F., and Algieri, C. "CO selective oxidation using catalytic zeolite membranes", Chem. Eng. J., 351, pp. 40-47 (2018).
18. Dong, X., Wang, H., Rui, Z., and Lin, Y.S. "Tubular dual-layer MFI zeolite membrane reactor for hydrogen production via the WGS reaction: Experimental and modeling studies", Chem. Eng. J., 268, pp. 219-229 (2015).
19. Sato, T., Kumagai, A., and Itoh, N. "A catalytic ZSM-5 membrane sandwiched with silicalite-1 layers for highly selective toluene disproportionation", Sep. Purif. Technol., 73(1), pp. 32-37 (2010).
20. Ejtemaei, M., Charchi Aghdam, N., Babaluo, A., Tavakoli, A., and Bayati, B. "Isomerization of C5 isomers in the BZSM-5 membrane reactor packed with Pt/SZ nanocatalyst", Chem. Eng. Process., 130, pp. 185-191 (2018).
21. Charchi Aghdam, N., Ejtemaei, M., Babaluo, A.A., Tavakoli, A., Bayati, B., and Bayat, Y. "Enhanced i-C5 production by isomerization of C5 isomers in BZSM-5 membrane reactor packed with Pt/ZSM-5 nanocatalyst", Chem. Eng. J., 305, pp. 2-11 (2016).
22. Algieri, C., Comite, A., and Capannelli, G. "6 - Zeolite membrane reactors", Handbook of Membrane Reactors, A. Basile, Ed., Woodhead Publ., pp. 245-270 (2013).
23. Song, Y.-Q., Feng, Y.-L., Liu, F., Kang, C.-L., Zhou, X. L., Xu, L.-Y., and Yu, G.-X. "Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance", J. Mol. Catal. A: Chem., 310(1-2), pp. 130-137 (2009).
24. Kumar, N., Masloboischikova, O.V., Kustov, L.M., Heikkila, T., Salmi, T., and Murzin, D.Y. "Synthesis of Pt modified ZSM-5 and beta zeolite catalysts: Influence of ultrasonic irradiation and preparation methods on physico-chemical and catalytic properties in pentane isomerization", Ultrason. Sonochem., 14(2), pp. 122-130 (2007).
25. Gora, L. and Jansen, J.C. "Hydroisomerization of C6 with a zeolite membrane reactor", Journal of Catalysis, 230(2), pp. 269-281 (2005).
26. Garofalo, A., Carnevale, M., Donato, L., Drioli, E., Alharbi, O., Aljlil, S., Criscuoli, A., and Algieri, C. "Scale-up of MFI zeolite membranes for desalination by vacuum membrane distillation", Desalination, 397, pp. 205-212 (2016).
27. Wang, H. and Lin, Y.S. "Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance", J. Membr. Sci., 396(0), pp. 128-137 (2012).
28. Lopez, C., Guillen, Y., Garcia, L., Gomez, L., and Ramirez, A. "n-pentane hydroisomerization on Pt containing HZSM-5, HBEA and SAPO-11", Catal Lett, 122(3-4), pp. 267-273 (2008).
29. Bayati, B., Belbasi, Z., Ejtemaei, M., Aghdam, N.C., Babaluo, A.A., Haghighi, M., and Drioli, E. "Separation of pentane isomers using MFI zeolite membrane", Sep. Purif. Technol., 106, pp. 56-62 (2013).
30. Zhang, Y., Wu, Z., Hong, Z., Gu, X., and Xu, N. "Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction", Chem. Eng. J., 197, pp. 314-321 (2012).
31. Ye, G., Sun, Y., Guo, Z., Zhu, K., Liu, H., Zhou, X., and Coppens, M.O. "Effects of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of n-pentane", J. Catal., 360, pp. 152- 159 (2018).
32. Setiabudi, H., Jalil, A., Triwahyono, S., Kamarudin, N., and Jusoh, R. "Ir/Pt-HZSM5 for n-pentane isomerization: Effect of Si/Al ratio and reaction optimization by response surface methodology", Chem. Eng. J., 217, pp. 300-309 (2013).
33. Medrano, J., Garofalo, A., Donato, L., Basile, F., De Santo, M., Gallucci, F., Cofone, F., Ciuchi, F., and Algieri, C. "CO selective oxidation using catalytic zeolite membranes", Chem. Eng. J., 351, pp. 40-47 (2018).
34. Kokotailo, G.T., Lawton, S. L., Olson, D.H., and Meier, W.M. "Structure of synthetic zeolite ZSM-5", Nature, 272, pp. 437-438 (1978).
35. Karimi, R., Bayati, B., Aghdam, N.C., Ejtemaee, M., and Babaluo, A.A. "Studies of the effect of synthesis parameters on ZSM-5 nanocrystalline material during template-hydrothermal synthesis in the presence of chelating agent", Powder Technol., 229, pp. 229-236 (2012).
36. Bedard, R. and Liu, C. "Recent advances in zeolitic membranes", Annu. Rev. Mater. Res., 48(0), pp. 83- 110 (2018).
Volume 27, Issue 3
Transactions on Chemistry and Chemical Engineering (C)
June 2020
Pages 1243-1252
  • Receive Date: 07 April 2019
  • Revise Date: 19 July 2019
  • Accept Date: 28 December 2019