References:
1. Drews, P.L.J., Neto, A.A., and Campos, M.F.M. "A survey on aerial submersible vehicles", Proc. IEEE/OES Oceans Int. Conf., pp. 1-7 (2009). https://www.researchgate.net/pro le/Paulo Drews- Jr/publicat ion/263314909 A Surv ey on Aerial Submersible Vehicles/links/0a85e53a8ace0d663900 0000.pdf.
2. Yang, X., Wang, T., Liang, J., et al. "Survey on the novel hybrid aquaticaerial amphibious air- craft: Aquatic unmanned aerial vehicle (AquaUAV)", Progress in Aerospace Sciences, 74, pp. 131-151 (2015).
3. Gao, A. and Techet, A.H. "Design considerations for a robotic ying sh", Oceans'11 MTS/IEEE KONA, pp. 1-8 (2011).DOI: 10.23919/OCEANS.2011.6107039. https://ieeexplore.ieee.org/document/6107039.
4. Fabian, A., Feng, Y., and Swartz, E., Hybrid Aerial Underwater Vehicle, Lexington, USA: MIT Lincoln Lab (2012).
5. Liang, J.H., Yao, G.C., Wang, T.M., et al. "Wing load investigation of the plunge-diving locomotion of a gannet Morus inspired submersible aircraft", Sci-ence China Technological Sciences, 57(2), pp. 390-402 (2014).
6. Siddall, R. and Kovac, M. "Launching the Aqua- MAV: bioinspired design for aerial-aquatic robotic platforms", Bioinspiration & Biomimetics, 9(3), pp. 1-18 (2014).
7. Siddall, R., Ancel, A.O., and Kovac, M. "Wind and water tunnel testing of a morphing aquatic micro air vehicle", Interface Focus, 7(1), pp. 1-15 (2017).
8. Chen, Y., Helbling, E.F., Gravish, N., et al. "Hybrid aerial and aquatic locomotion in an at-scale robotic insect", International Conference on Intelligent Robots and Systems, IEEE, pp. 331-338 (2015).
9. Chen, Y., Wang, H., Helbling, E.F., et al. "A bio-logically inspired, apping-wing, hybrid aerial-aquatic microrobot", Science Robotics, 2(11), pp. 1-11 (2017).
10. Alzu0Bi, H., Akinsanya, O., Kaja, N., et al. "Evaluation of an aerial quadcopter power-plant for under- water operation", 10th International Symposium on Mechatronics and Its Applications (ISMA), IEEE, pp. 1-4 (2015).
11. Alzu0Bi, H., Mansour, I., and Rawashdeh, O. "Loon copter: Implementation of a hybrid unmanned aquaticaerial quadcopter with active buoyancy control", Journal of Field Robotics, 3, pp. 1-15 (2018).
12. Maia, M.M., Soni, P., and Diez, F.J. "Demonstration of an aerial and submersible vehicle capable of ight and underwater navigation with seamless air-water transition", Compute Science, pp. 1-9 (2015).
13. Villegas, A., Mishkevich, V., Gulak, Y., et al. "Analysis of key elements to evaluate the performance of a multirotor unmanned aerial aquatic vehicle", Aerospace Science and Technology, 70, pp. 412-418 (2017).
14. Mercado, D., Maia, M., and Diez, F.J. "Aerial- underwater systems, a new paradigm in unmanned vehicles", Journal of Intelligent & Robotic Systems, 95(10), pp. 229-238 (2019). DOI: 10.1007/s10846-018-0820-x.
15. Drews, P.L.J, Neto, A.A., and Campos, M.F.M. "Hybrid unmanned aerial underwater vehicle: Modeling and simulation", International Conference on Intelligent Robots & Systems, IEEE, pp. 4637-4642 (2014).
16. Rosa, R.T.S., Evald, P.J.D.O., and Drews, P.L.J. "A comparative study on sigma-point Kalman lters for trajectory estimation of hybrid aerial-aquatic vehicles", International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 7460-7465 (2018).
17. Qi, D., Feng, J., and Li, Y. "Dynamic model and ADRC of a novel water-air unmanned vehicle for water entry with in-ground e ect", Journal of Vibroengineering, 18(6), pp. 3743-3756 (2016).
18. Ma, Z.C., Feng, J.F., and Yang, J. "Research on vertical air water trans-media control of hybrid un-manned aerial underwater vehicles based on adaptive sliding mode dynamical surface control", International Journal of Advanced Robotic Systems, 15(2), pp. 1-10 (2018).
19. Lu, D., Xiong, C., Lyu, B., et al. "Multi-mode hybrid aerial underwater vehicle with extended endurance", OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), IEEE, pp. 1-7 (2018).
20. Ferziger, J.H. and Peric, M., Computational Methods for Fluid Dynamics, 3rd Edn., Springer-Verlag Berlin Heidelberg, pp. 71-90, New York, USA (2002).
21. Antony, J., Design of Experiments for Engineers and Scientists, 2nd Edn, pp. 29-42, Elsevier Science & Technology Books, Amsterdam, Holland (2003).
22. Xiao, Q., Wang, L., and Xu, H. "Application of kriging models for a drug combination experiment on lung cancer", Statistics in Medicine, 38(2), pp. 236-246 (2019).
23. Kim, K. and June, J. "Multiobjective optimization for a plasmonic nanoslit array sensor using Kriging models", Applied Optics, 56(21), pp. 5838-5843 (2017).
24. Park, T., Yum, B., Hung, Y., et al. "Robust Kriging models in computer experiments", Journal of the Operational Research Society, 67(4), pp. 644-653 (2016).
25. Kaveh, A. and Nasrollahi, A. "Charged system search and particle swarm optimization hybridized for optimal design of engineering structures", Scientia Iranica, 21(2), pp. 295-305 (2014).
26. Li, C., Zhai, R., Liu, H., et al. "Optimization of a heliostat field layout using hybrid PSO-GA algorithm", Applied Thermal Engineering, 128, pp. 33-41 (2018).
27. Nobile, M.S., Cazzaniga, P., Besozzi, D., et al. "Fuzzy self-tuning PSO: A settings-free algorithm for global optimization", Swarm and Evolutionary Computation, 39, pp. 70-85 (2018).