References:
[1] Molina, M.J. and Molina, L.T. “Megacities and atmospheric pollution”,Air. Waste. Manag. Assoc., 54, pp. 644-680 (2004).
[2] Kolehmainen, M., Martikainen, H. and Ruuskanen, J. “Neural networks and periodic components used in air quality forecasting”,Atmos. Environ., 35, pp. 815-825(2001).
[3] Zhang, Y., Bocquet, M., Mallet, V. and et al. “Real-time air quality forecasting, part I: History, techniques, and current status”,Atmos. Environ., 60, pp. 632-655 (2012).
[4] U.S. EPA.“Guidelines for developing an air quality (Ozone and PM2.5) forecasting program”, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina. EPA-456/R- 03-002 (2003).
[5] Feng, X., Li, Q., Zhu, Y. and et al.“Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation”,Atmos. Environ., 107, pp. 118-128 (2015).
[6] Hrust, L., Klaić, Z.B., Križan, J. and et al. “Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations”,Atmos. Environ., 43, pp. 5588-5596 (2009).
[7] Perez, P. and Gramsch, E. “Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes”,Atmos. Environ., 124, pp. 22-27 (2016).
[8] Donnelly, A., Naughton, O., Broderick, B. and et al. “Short-Term Forecasting of Nitrogen Dioxide (NO2) Levels Using a Hybrid Statistical and Air Mass History Modelling Approach”,Environ. Model.Assess., 22, pp. 231-241 (2016).
[9] Fernando, H.J.S., Mammarella, M.C., Grandoni, G. and et al. “Forecasting PM10 in metropolitan areas: efficacy of neural networks”,Environ. Pollut., 163, pp. 62-67 (2012).
[10] Genc, D.D., Yesilyurt, C. and Tuncel, G. “Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere”,Environ. Monit Assess., 166, pp. 11-27 (2010).
[11] Vlachogianni, A., Kassomenos, P., Karppinen, A. and et al. “Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki”,Sci. Total. Environ., 409, pp. 1559-1571 (2011).
[12] Perez, P. and Reyes, J. “An integrated neural network model for PM10 forecasting”,Atmos. Environ., 40, pp. 2845-2851 (2006).
[13] Arhami, M., Kamali, N. and Rajabi, M.M. “Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations”,Environ. Sci. Pollut. Res.,20, pp. 4777-4789 (2013).
[14] Osowski, S. and Garanty, K. “Forecasting of the daily meteorological pollution using wavelets and support vector machine”,Eng. Appl. Artif. Intell., 20, pp. 745-755 (2007).
[15] Luna, A.S., Paredes, M.L.L., de Oliveira, G.C.G. and et al. “Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil”, Atmos. Environ., 98, pp. 98-104 (2014).
[16] Brunelli, U., Piazza, V., Pignato, L. and et al. “Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy”,Atmos. Environ., 41, pp. 2967-2995 (2007).
[17] Boznar, M., Lesjak, M. and Mlakar, P. “A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain”,Atmos. Environ. 27B(2), pp. 221-230 (1993).
[18] Perez, P. and Reyes, J. “Prediction of maximum of 24-h average of PM10 concentrations 30h in advance in Santiago, Chile”,Atmos. Environ., 36, pp. 4555-4561 (2002).
[19] Jiang, D., Zhang, Y., Hu, X. and et al. “Progress in developing an ANN model for air pollution index forecast”,Atmos. Environ., 38, pp. 7055-7064 (2004).
[20] Lu, H.C., Hsieh, J.C. and Chang, T.S. “Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network”,Atmos. Res., 81, pp. 124-139 (2006).
[21] Paschalidou, A.K., Karakitsios, S., Kleanthous, S. and et al. “Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management”,Environ. Sci. Pollut. Res., 18, pp. 316-327 (2011).
[22] Wang, P., Liu, Y., Qin, Z. and et al. “A novel hybrid forecasting model for PM10 and SO2 daily concentrations”, Sci. Total. Environ., 505, pp. 1202-1212 (2015).
[23] Gao, M., Yin, L. and Ning, J. “Artificial neural network model for ozone concentration estimation and Monte Carlo analysis”, Atmos. Environ., 184, pp. 129-139 (2018).
[24] Siwek, K. and Osowski, S. “Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors”,Eng. Appl. Artif. Intell., 25, pp. 1246-1258 (2012).
[25] Bai, Y., Li, Y., Wang, X. and et al. “Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions”,Atmos. Pollu. Res.,7, pp. 557-566 (2016).
[26] Bidokhti, A.A., Shariepour, Z. and Sehatkashani, S. “Some resilient aspects of urban areas to air pollution and climate change, case study: Tehran, Iran”, Scientica Iranica A, 23(5), pp. 1994-2004 (2016).
[27] http://www.razavimet.ir
[28] http://www.scats.com.au
[29] http://www.weather.uwyo.edu
[30] http://www.raob.com
[31] http://www.epmc.mashhad.ir
[32] Misiti, M., Misiti, Y., Oppenheim, G. and et al. “Wavelet Toolbox”, pp. 1-16_1-23, MathWorks, Natick (1996).
[33] Mallat, S.“A theory for multiresolution signal decomposition: The wavelet representation”, IEEE Transactions PAMI, 11, pp. 674–693 (1989).
[34] User’s Guide for the Advanced Research WRF (ARW) Modeling System Version 3.9. Available online: http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html (accessed 2017).
[35] Bouloukza, I., Mourad, M., Medoued, A. and et al. “Multi-objective optimization design and performance evaluation of slotted Halbach PMSM using Monte Carlo method”, Scientica Iranica D, 25(3), pp. 1533-1544 (2018).
[36] Sarle, W.S. “Stopped training and other remedies for overfitting”, Proceedings of the 27th Symposium on the Interface of Computer Science and Statistics, pp. 352-360 (1995).
[37] Kurt, A. and Oktay, A.B. “Forecasting air pollutant indicator levels with geographic models 3days in advance using neural networks”,Expert. Syst. with Appl., 37, pp. 7986-7992 (2010).
[38] Domańska, D. and Wojtylak, M.“Explorative forecasting of air pollution”,Atmos. Environ., 92, pp. 19-30 (2014).