Smart-home electrical energy scheduling system using multi-objective antlion optimizer and evidential reasoning

Document Type : Article

Authors

1 Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of ‎Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran‎

2 Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology, Narmak, Tehran, Postal Code 16846-13114, Iran.

Abstract

Smart-home energy-management-systems (SHEMSs) are widely used for energy management in smart buildings. Energy management in smart homes is an arduous task and necessitates efficient scheduling of appliances in buildings. Scheduling of smart appliances is usually enmeshed by various and sometimes contradictory criteria which should be considered concurrently in the scheduling process. Multi-criteria decision-making (MCDM) techniques are able to select the most suitable alternative among copious ones. This paper tailors a comprehensive framework which merges MCDM techniques with evolutionary multi-objective optimization (EMOO) techniques for selecting the most proper schedule for appliances by creating a trade-off between optimization criteria. A Multi-Objective Ant Lion Optimizer (MOALO) is tailored and tested on a smart home case study to detect all the Pareto solutions. A benchmark instance of the appliance scheduling is solved employing the proposed methodology, Shannon’s entropy technique is employed to find the objectives’ corresponding weights, and afterward, the acquired Pareto optimal solutions are ranked utilizing the Evidential Reasoning (ER) method. By inspecting the efficiency of every solution considering multiple criteria such as unsafety, electricity cost, delay, Peak Average Ratio, and CO2 emission, the proposed approach confirms its effectiveness in enhancing the method for smart appliance scheduling.

Keywords

Main Subjects


References:
1. Iwafune, Y. and Yagita, Y. "High-resolution determinant analysis of Japanese residential electricity consumption using home energy management system data", Energy Build., 116, pp. 274-284 (2016).
2. Nejat, P., Jomehzadeh, F., Taheri, M.M., et al. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)", Renew. Sustain. Energy Rev., 43, pp. 843-862 (2015).
3. Geng, Y., Chen, W., Liu, Z., et al. "A bibliometric review: Energy consumption and greenhouse gas emissions in the residential sector", J. Clean. Prod., 159(800), pp. 301-316 (2017).
4. Naji, H.I., Mahmood, M., and Mohammad, H.E. "Using BIM to propose building alternatives towards lower consumption of electric power in Iraq", Asian J. Civ. Eng., 20(5), pp. 669-679 (2019).
5. Kaveh, A., Shamsapour, N., Sheikholeslami, R., et al. "Forecasting transport energy demand in Iran using meta-heuristic algorithms", Int. J. Optim. Civ. Eng., 2(4), pp. 533-544 (2012).
6. Kaveh, A., Advances in Metaheuristic Algorithms for Optimal Design of Structures, Second Edi, Springer International Publishing, Cham, Switzerland (2017).
7. Kaveh, A. and Vazirinia, Y. "Chaotic vibrating particles system for resource constraint project scheduling problem", Sci. Iran. Trans. A Civ. Eng. (In Press).
8. Golberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, Reading, Massachusetts (1989).
9. Russell, E. and Kennedy, J. "A new optimizer using particle swarm theory", Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., Nagoya, Japan, pp. 39-43 (1995).
10. Kaveh, A. and Mahdavi, V.R. "Resource allocation and time-cost trade-off using colliding bodies optimization", In Colliding Bodies Optimization: Extensions and Applications, Springer International Publishing,Cham, pp. 261-277 (2015). 
11. Kaveh, A. and Ilchi Ghazaan, M. "A new metaheuristic algorithm: vibrating particles system", Sci. Iran. Trans., A, Civ. Eng., 24(2), pp. 1-32 (2017).
12. Mirjalili, S. "The ant lion optimizer", Adv. Eng. Softw., 83, pp. 80-98 (2015).
13. Deb, K., Pratap, A., Agarwal, S., et al. "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., 6(2), pp. 182-197 (2002).
14. Coello, C.A., Pulido, G.T., and Lechuga, M.S. "Handling multiple objectives with particle swarm optimization", IEEE Trans. Evol. Comput., 8(3), pp. 256-279 (2004).
15. Kaveh, A. and Mahdavi, V.R. "Multi-objective colliding bodies optimization algorithm for design of trusses", J. Comput. Des. Eng., 6(1), pp. 49-59 (2019).
16. Kaveh, A. and Ilchi Ghazaan, M. "A new VPS-based algorithm for multi-objective optimization problems", Eng. With Comput. (In press).
Kaveh, A. and Ilchi Ghazaan, M. "A new VPS-based algorithm for multi-objective optimization problems", Eng. Comput., (0123456789) (2019).
17. Mirjalili, S., Jangir, P., and Saremi, S. "Multiobjective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems", Appl. Intell., 46(1), pp. 79-95 (2017).
18. Kazemzadeh Azad, S. "Seeding the initial population with feasible solutions in metaheuristic optimization of steel trusses", Eng. Optim., 50(1), pp. 89-105 (2018).
19. Kazemzadeh Azad, S. "Enhanced hybrid metaheuristic algorithms for optimal sizing of steel truss structures with numerous discrete variables", Struct. Multidiscip. Optim., 55(6), pp. 2159-2180 (2017).
20. Mela, K., Tiainen, T., Heinisuo, M., et al. "Comparative study of multiple criteria decision making methods for building design", Adv. Eng. Informatics, 26(4), pp. 716-726 (2012).
21. Monghasemi, S., Nikoo, M.R., Khaksar Fasaee, et al. "A novel multi criteria decision making model for optimizing time-cost-quality trade-off problems in construction projects", Expert Syst. Appl., 42(6), pp. 3089-3104 (2015).
22. Mela, K., Tiainen, T., and Heinisuo, M. "Comparative study of multiple criteria decision making methods for building design", Adv. Eng. Informatics, 26(4), pp. 716-726 (2012).
23. Wallenius, J., Fishburn, P.C., Zionts, S., et al. "Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead", Manage. Sci., 54(7), pp. 1336-1349 (2008).
24. Loken, E. "Use of multicriteria decision analysis methods for energy planning problems", Renew. Sustain. Energy Rev., 11(7), pp. 1584-1595 (2007).
25. Hobbs, B.F. and Meier, P.M. "Multicriteria methods for resource planning: An experimental comparison",IEEE Trans. Power  Syst., 9(4), pp. 1811-1817 (1994).
26. Belton, V. and Stewart, T.J., Multiple Criteria Decision Analysis, An Integrated Approach, Springer Science & Business Media (2002).
27. Saaty, T.L. "Decision making with the analytic hierarchy process", Sci. Iran., 9(3), pp. 215-229 (2002).
28. Bazargan-Lari, M.R. "An evidential reasoning approach to optimal monitoring of drinking water distribution systems for detecting deliberate contamination events", J. Clean. Prod., 78, pp. 1-14 (2014).
29. Lai, Y.-J., Liu, T.-Y., and Hwang, C.-L. "TOPSIS for MODM", Eur. J. Oper. Res., 76, pp. 486-500 (1994).
30. Brans, J.P., Vincke, P., and Mareschal, B. "How to select and how to rank projects: The PROMETHEE method", Eur. J. Oper. Res., 24, pp. 228-238 (1986).
31. Roy, B. "The outranking approach and the foundations of electre methods", Readings Mult. Criteria Decis. Aid, C.A. e Costa, Ed., Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 155-183 (1990).
32. Ishizaka, A. and Nemery, P., Multi-Criteria Decision Analysis: Methods and Software, John Wiley & Sons (2013).
33. Yang, J.B., Wang, Y.M., Xu, D.L., et al. "The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties", Eur. J. Oper. Res., 171(1), pp. 309-343 (2006).
34. Chaudhuri, S. and Deb, K. "An interactive evolutionary multi-objective optimization and decision making procedure", Appl. Soft Comput. J., 10(2), pp. 496-511 (2010).
35. Du, Y.F., Jiang, L., Li, Y.Z., Counsell, J., et al. "Multi-objective demand side scheduling considering the operational safety of appliances", Appl. Energy, 179, pp. 864-874 (2016).
36. Zhao, Z., Lee, W.C., Shin, Y., and Song, K.-B. "An optimal power scheduling method for demand response in home energy management system", IEEE Trans. Smart Grid, 4(3), pp. 1391-1400 (2013).
37. Sou, K.C.,Weimer, J., Sandberg, H., et al. "Scheduling smart home appliances using mixed integer linear programming", Proc. IEEE Conf. Decis. Control, pp. 5144-5149 (2011).
38. Ngatchou, P., Zarei, A., and El-Sharkawi, M. "Pareto multi objective optimization", Proc. 13th Int. Conf. Intell. Syst. Appl. to Power Syst., pp. 84-91 (2005).
39. Pareto, V. "Cours d'economie politique", Libr. Droz, 25 (1964).
40. Shannon, C.E. "A mathematical theory of communication", Bell Syst. Tech. J., 27(3), pp. 379-423 (1948).
41. Wang, T., Liu, J., Li, J., et al. "An intuitionistic fuzzy OWA-TOPSIS method for collaborative network formation considering matching characteristics", Sci. Iran., 25(3), pp. 1671-1687 (2018).
42. Wang, Y.J. "A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation", Appl. Soft Comput. J., 30, pp. 412-420 (2015).
43. Deng, H., Yeh, C.H., and Willis, R.J. "Inter-company comparison using modified TOPSIS with objective weights", Comput. Oper. Res., 27(10), pp. 963-973 (2000).
44. Keeney, R.L. and Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Trade-Offs, Cambridge University Press (1993).
45. Guitouni, A., Martel, J., and Vincke, P., A framework to Choose a Discrete Multicriterion Aggregation Procedure, Defence Research Establishment Valcatier (1999).
46. Xu, D.L. "An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis", Ann. Oper. Res., 195(1), pp. 163-187 (2012).
47. Ameren Illinois Power Company, Real-time pricing for residential customers, https://www. powersmartpricing. org/prices/.
48. Kristinsdottir, A.R., Stoll, P., Nilsson, A., and Brandt, N. "Description of climate impact calculation methods of the CO2e-signal for the active house project", KTH Royal Institute of Technology (2013).
49. Taguchi, G., Introduction to Quality Engineering: Designing Quality into Products and Processes, Asian Productivity Organization (1986).
50. Jolai, F., Asefi, H., Rabiee, M., et al. "Bi-objective simulated annealing approaches for no-wait two-stage flexible  flow shop scheduling problem", Sci. Iran., 20(3), pp. 861-872 (2013).