References:
[1] Guo, X., Du, Z., Li, G., et al. “High Frequency Vibration Recovery Enhancement Technology in the Heavy Oil Fields of China, SPE International Thermal Operations and Heavy Oil Symposium, Bakersfield, California, 16-18 March, SPE-86956, pp. 1-18 (2004).
[2] Xu, H., and Pu, C. “Removal of Near-wellbore Formation Damage by Ultrasonic Stimulation, Pet. Sci. Technol., 31, pp. 563-571 (2013).
[3] Jin, Y., Zheng, X., Chu, X., et al. “Oil Recovery from Oil Sludge through Combined Ultrasound and Thermochemical Cleaning Treatment, Ind. Eng. Chem. Res., 51, pp. 9213−9217 (2012).
[4] Massoud, E.Z., Xiao, Q., El-Gamal, H.A., et al. “Numerical study of an individual Taylor bubble rising through stagnant liquids under laminar flow regimeˮ, Ocean Eng., 162, pp. 117-137 (2018).
[5] Amani, E., Ahmadpour, A., Tohidi, M., “A numerical study of the rise of a Taylor bubble through a sudden/gradual expansion in Newtonian and shear-thinning liquids, Scientia Iranica, 152: pp. 236-246 (2019).
[6] Zhang, S., Wang, S.P., Zhang, A.M., et al. “Numerical study on motion of the air-gun bubble based on boundary integral methodˮ, Ocean Eng., 154, pp. 70-80 (2018).
[7] Ziolkowski, A. “Measurement of air-gun bubble oscillations, Geophys., 63, pp. 2009-2024 (1998).
[8] Chahine, G.L., Hsiao, Ch.T., Choi, J.K., et al. “Bubble Augmented Water jet Propulsion: Two-Phase Model Development and Experimental Validation, 27th Symposium on Naval Hydrodynamics, Seoul, Korea, 5-10 October, pp. 1-17 (2008).
[9] Wu, X., Choi, J.K., Singh, S., et al. “Experimental and numerical investigation of bubble augmented water jet propulsion, J. Hydraulics, 24, pp. 635-647 (2012).
[10] Hayati, A.N., Hashemi, S.M., Shams, M. “Design and analysis of bubble-injected water ramjets with discrete injection configurations by computational fluid dynamics method. Proc. IMechE Part C: J. Mechanical Engineering Science, 227, pp. 1945-1955 (2015).
[11] Makaloski, V., Rohlffs, F., Konstantinos, S., et al. “Bubble counter for measurement of air bubbles during thoracic stent-graft deployment in a flow model, J. Surg. Res., 232, pp. 121-127 (2018).
[12] Sánchez, R.M., Rivero, F., Bastante, T., et al. “Intracoronary Bubbles: Iatrogenic Air Embolism Assessed With Optical Coherence Tomography, JACC Cardiovascular Interventions, 10, pp. 153-154 (2017).
[13] Farhangmehr, V., Hajizadeh, A., Shervani-Tabar, M.T., et al. “Numerical investigation on the pulsating bubble dynamics in a narrow cylinder with a compliant coating. Fluid Dyn. Res., 46, 015513, pp. 1-27 (2014).
[14] Ni, B.Y., Zhang, A.M., Wang, Q.X., et al. “Experimental and numerical study on the growth and collapse of a bubble in a narrow tube. Acta Mech. Sin. 28, pp. 1248-1260 (2012).
[15] Baradaran-Fard, M. and Nikseresht, A.H. “Numerical simulation of unsteady 3D cavitating flows over axisymmetric cavitators, Scientia Iranica, 19, pp.1265-1278 (2012).
[16] Hanafizadeh, P., Saidi, M.H., Nouri Gheimasi, M.H., Ghanbarzadeh, S. “Experimental investigation of air–water, two-phase flow regimes in vertical mini pipe, Scientia Iranica, 18: pp.923-929 (2011).
[17] Shervani-Tabar, M.T., Rouhollahi, R. “Numerical study on the effect of the concave rigid boundaries on the cavitation intensity, Scientia Iranica, 24: pp. 1958-1965 (2017).
[18] Fayzi, P., Bastani, D., Lotfi, M., Khararoodi, M.Gh. “The effects of bubble detachment shape on rising bubble hydrodynamics, Scientia Iranica, pp. -, (2018), doi: 10.24200/sci.2018.51823.2383.
[19] Ory, E., Yuan, H., Prosperetti, A., et al. “Growth and collapse of a vapor bubble in a narrow tube, Phys. Fluids, 12, pp. 1268-1277 (2000).
[20] Shervani-Tabar, M.T. and Eslamian, A. “Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder, 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia, 2-7 December, pp. 1420-1426 (2007).
[21] Miao, H., Gracewski, S.M., Dalecki, D. “Ultrasonic excitation of a bubble inside a deformable tube:Implications for ultrasonically induced hemorrhage, J. Acoust Soc. Am.,124, pp. 2374-2384 (2008).
[22] CLANET, Ch. and Heraud, P. “Starby G. On the motion of bubbles in vertical tubes of arbitrary cross-sections: some complements to the Dumitrescu–Taylor problem, J. Fluid Mech., 519, pp. 359-376 (2004).
[23] Moore, D.W. “The boundary layer on a spherical gas bubble, J. Fluid Mech.,16, pp. 161-176 (1963).
[24] Kang, I.S. and Leal, L.G. “The drag coefficient for a spherical bubble in a uniform streaming flow, Phys. Fluids, 31, pp. 233-237 (1988).
[25] Joseph, D.D. “Potential Flow of Viscous Fluids: Historical Notes, Int. J. Multiphase Flow, 32, pp. 285-310 (2006).
[26] Klaseboer, E., Manica, R., Chan, D.Y.C., et al. “BEM simulations of potential flow with viscous effects as applied. Eng. Anal. Boundary Elem., 35, pp. 489-494 (2011).
[27] Joseph, D.D. and Wang H. “Dissipation approximation and viscous potential flow. J. Fluid Mech., 505, pp. 365-377 (2004).
[28] Manmi, K. and Wang, Q. “Acoustic microbubble dynamics with viscous effects, Ultrason. Sonochem., 36: pp. 427-436 (2016).
[29] Zhang, A.M. and Ni, B.Y. “Three-dimensional boundary integral simulations of motion and deformation of bubbles with viscous effects, Comput. Fluids, 92, pp. 22-33 (2014).
[30] Wang, S.P., Wang, Q.X., Leppinen, D.M., et al. “Acoustic bubble dynamics in a microvessel surrounded by elastic material, Phys. Fluids, 30, 012104, pp. 1-10 (2018).
[31] Minsier, V., Wilde, J.D., Proost, J. “Simulation of the effect of viscosity on jet penetration into a single cavitating bubble, J. Appl. Phys., 106, 084906, pp. 1-10 (2009).
[32] Taib, B.B. “Boundary integral method applied to cavitation bubble dynamics, PhD Thesis, University of Wollongong, Australia (1985).
[33] Mehravarana, M., and Kazemzadeh, S. “Simulation of buoyant bubble motion in viscous flows employing lattice Boltzmann and level set methods, Scientia Iranica, 18: pp. 231-240 (2011).
[34] Lind, S.J. and Philips, T.N. “The effect of viscoelasticity on the dynamics of gas bubbles near free surfaces, Phys. Fluids, 25, 022104, pp. 1-32 (2013).
[35] Katsikadelis, J.T. “Preliminary Mathematical Concept, In Boundary Elements: Theory and Applications, 1th ed., UK, Elsevier Science, p. 16 (2002).
[36] Zhou, J., Hu, J., Yuan, Sh. “Modeling bubble evolution in air-oil mixture with a simplified method, Proc. IMechE Part C: J. Mechanical Engineering Science, 230, pp. 2865-2871 (2016).
[37] White, F.M. “Fundamental Equations of Compressible Viscous Flow, In Viscous Fluid Flow, 2th ed., New York, McGraw-Hill, pp. 61-69 (1991).
[38] Batchelor, G.K. “Flow at Large Reynolds Number: Effects of Viscosity, In An introduction to fluid dynamics,1th ed., UK, Cambridge University Press, pp. 264-377 (2000).
[39] Joseph, D.D., Funada, T., Wang, J. “Helmholtz decomposition coupling rotational to irrotational flow, In Potential flows of viscous and Viscoelastic fluids, 1th ed., UK, Cambridge University Press, pp. 15-18 (2007).
[40] Shervani-Tabar, M.T. “Computer study of a cavity bubble near a rigid boundary, a free surface and a compliant wall, PhD Thesis, University of Wollongong, Australia (1995).