References:
1. Khateb, F. "Bulk-driven oating-gate and bulk-driven quasi-oating-gate techniques for low-voltage lowpower analog circuits design", Int. J. Electron. Commun. (AEU), 68(1), pp. 64-72 (2014).
2. Kulej, T. and Khateb, F. "Bulk-driven adaptively biased OTA in 0.18 μm CMOS", Electron. Lett., 51(6), pp. 458-460 (2015).
3. Rezaei, F. and Azhari, S.J. "Ultra low voltage, high performance operational transconductance amplifier and its application in a tunable Gm-C filter", Microelectronics Journal, 42, pp. 827-836 (2011).
4. Khateb, F., Khatib, N., Koton, J., et al. "Quadrature oscillator based on novel low-voltage ultra-low-power quasi- oating-gate DVCC", Scientia Iranica, 25(6), pp. 3477-3489 (2018). DOI: 10.24200/SCI.2017.4377 5. Grasso, A.D., Pennisi, S., Scotti, G., et al. "0.9-V class-AB miller OTA in 0.35-m CMOS with thresholdlowered non-tailed differential pair", IEEE Trans. Circuits Syst. I, 64(7), pp. 1740-1747 (2017).
6. Chatterjee, S., Tsividis, Y., and Kinget, P. "0.5- V analog circuit techniques and their application in OTA and filter design", IEEE J. Solid-State Circuits, 40(12), pp. 2373-2387 (2005).
7. Kulej, T. "0.5-V bulk-driven CMOS operational amplifier", IET Circuits Devices Syst., 7(6), pp. 352-360 (2013).
8. Rezaei, F. and Azhari, S.J. "Transconductor linearization based on adaptive biasing of source-degenerative MOS transistors", Circuits Syst Signal Process, 34, pp. 1149-1165 (2015).
9. Rezaei, F. and Azhari, S.J. "A new controllable adaptive biasing linearization technique for a CMOS OTA and its application to tunable Gm-C filter design", Microelectronics Journal, 46, pp. 810-818 (2015).
10. Meghdadi, M. and Sharif Bakhtiar, M. "Minimum power Miller-compensated CMOS operational amplifiers", Scientia Iranica, 21(6), pp. 2243-2249 (2014).
11. Azcona, C., Calvo, B., Celma, S., et al. "Low-voltage low-power CMOS rail-to-rail voltage-to-current converters", IEEE Trans. Circuits Syst. I, 60(9), pp. 2333-2342 (2013).
12. Abdelfattah, O., Roberts, G.W., Shih, I., et al. "An ultra-low-voltage CMOS process-insensitive self-biased OTA with rail-to-rail input range", IEEE Trans. Circuits Syst. I, 62(10), pp. 2380-2390 (2015).
13. Ferreira, L.H.C., Pimenta, T.C., and Moreno, R.L."An ultra-lows-voltage ultra-low-power CMOS miller OTA with rail-to-rail input/output wing", IEEE Trans. Circuits Syst. II, 54(10), pp. 843-847 (2007).
14. Ferreira, L.H.C. and Sonkusale, S.R. "A 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process", IEEE Trans. Circuits Syst. I, 61(6), pp. 1609-1617 (2014).
15. Khateb, F., Kulej, T., and Vlassis, S. "Extremely lowvoltage bulk-driven tunable transconductor", Circuits Syst Signal Process, 36(2), pp. 511-524 (2017).
16. Kumngern, M. and Khateb, F. "0.5 V fully differential current conveyor using bulk-driven quasi- oating-gate technique", IET Circuits Devices Syst., 10(1), pp. 78- 86 (2016).
17. Mobarak, M., Onabajo, M., Martinez, J.S., et al. "Attenuation-predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications", IEEE J. Solid-State Circuits, 45(2), pp. 351-367 (2010).
18. Rezaei, F. and Azhari, S.J. "Ultra low-voltage, rail-torail input/output stage operational transconductance amplifier (OTA) with high linearity and its application in a Gm-C filter", 11th Int'l Symposium on Quality Electronic Design (ISQED), pp. 231-236 (2010).
19. Tsividis, Y. and Mcandrew, C., Operation and Modeling of the MOS Transistor, 3th Edn., Oxford University Press, New York, USA (2011).