Adaptive Radar Signal Detection in Autoregressive Interference using Kalman-based Filters

Document Type : Article


1 Department of Electrical Engineering, Yazd University, Yazd, P.O. Box 89195-741, Iran

2 - Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, P.O. Box 84156-83111, Iran - Department of Electrical Engineering, Yazd University, Yazd, P.O. Box 89195-741, Iran


This paper deals with the adaptive detection of radar target signal with unknown amplitude embedded in Gaussian interference which has been modelled as an AR process. Considering such model for the interference decreases the number of parameters that must be estimated and therefore less or even no secondary data is needed to obtain a detector with desired performance. Herein the detection is based on only the primary data. The authors resorting to the modern Kalman filtering technique develop the conventional GLRT-based detection in the presence of AR interference and propose two new detectors; AREKF based on extended Kalman filter and ARUKF based on unscented Kalman filter. The performance assessment conducted by Monte Carlo simulation compares the proposed detectors with the existing detectors based on generalised likelihood ratio test and Kalman filter. The results show that the ARUKF detector significantly has better detection performance than that of other detectors for the low number of primary data and high signal to noise ratio (SNR).


1. Kelly, E.J. "An adaptive detection algorithm", IEEE Trans. Aerosp. Electron. Syst., 22(2), pp. 115-127 (1986).
2. Robey, F.C., Fuhrman, D.L., Kelly, E.J., et al. "A CFAR adaptive matched filter detector", IEEE Trans. Aerosp. Electron. Syst., 29(1), pp. 208-216 (1992).
3. Rafie, A.H. and Taban, M.R. "Two dimensional optimal linear detector for slowly fluctuating radar signals in compound Gaussian clutter", Scientia Iranica, 21(6), pp. 2213-2223 (2014).
4. Conte, E., De Maio, A., and Ricci, G. "GLRTbased adaptive detection algorithms for range-spread targets", IEEE Trans. Signal Process., 49(7), pp. 1336-1348 (2001).
5. Himed, B. and Melvin, W.L. "Analyzing space-time adaptive processors using measured data", Thirty-first Asilomar Conf. on Signals, Systems & Computers, Pacific Grove, CA, USA, pp. 930-935 (1997).
6. Bandiera, F., Besson, O., Coluccia, A., et al. "ABORTlike detectors: A Bayesian approach", IEEE Trans. Signal Process., 63(19), pp. 5274-5284 (2015).
7. Aubry, A., De Maio, A., Foglia, G., et al. "Diffuse multipath exploitation for adaptive radar detection", IEEE Trans. Signal Process., 63(5), pp. 1268-1281 (2015).
8. Said, S., Hajri, H., Bombrun, L., et al. "Gaussian distributions on riemannian symmetric spaces: statistical kerning with structured covariance matrices", IEEE Trans. Information Theory, 64(2), pp. 752-772 (2018).
9. Kay, S.M. "Asymptotically optimal detection in unknown colored noise via autoregressive modeling", IEEE Trans. on Acoustics, Speech, and Signal Processing, 31(4), pp. 927-940 (1983).
10. Qureshi, T.R., Rangaswamy, M., and Bell, K.L. "Parametric adaptive matched filter for multistatic MIMO radar", IEEE Trans. Aerosp. Electron. Syst., 54(5), pp. 2202-2219 (2018).
11. Haykin, S. and Steinhardt, A., Adaptive Radar Detection and Estimation, Wiley, New York (1992).
12. Sheikhi, A., Nayebi, M.M., and Aref, M.R. "Adaptive detection algorithm for radar signals in autoregressive interference", IEE Proc., Radar Sonar Navig., 145(5), pp. 309-314 (1998).
13. Sheikhi, A., Nayebi, M.M., and Aref, M.R. "A powerful practical coherent adaptive radar detector", 2001 CIE Conf. on Radar, Beijing, China, pp. 405-409 (2001).
14. Moniri, A.R., Nayebi, M.M., and Sheikhi, A. "A multichannel auto-regressive GLR detector for airborne phased array radar applications", 2003 IEEE Conf. on Radar, Adelaide, SA, Australia, pp. 206-211 (2003).
15. Sheikhi, A., Zamani, A., and Norouzi, Y. "Modelbased adaptive target detection in clutter using MIMO radar", 2006 CIE Conf. on Radar, Shanghai, China, pp. 1-4 (2006).
16. Alfano, G., De Maio, A., and Farina, A. "Model-based adaptive detection of range-spread targets", IEE Proc. Radar Sonar Navig., 151(1), pp. 2-10 (2004).
17. Sheikhi, A., Zamani, A., Hatam, M., et al. "Model based adaptive detection algorithm with low secondary data support", 10th Int. Conf. on Information Science, Signal Processing and their Applications, pp. 177-180 (2010).
18. Wang, P., Li, H., and Himed, B. "A parametric moving target detector for distributed MIMO radar in non-homogeneous environment", IEEE Trans. Signal Process., 61(9), pp. 2282-2294 (2013).
19. Li, H., Wang, Z., Liu, J., et al. "Moving target detection in distributed MIMO radar on moving platforms", IEEE J. Select. Topics Signal Process., 9(8), pp. 1524- 1535 (2015).
20. Fan, Y.F., Luo, F., Li, M., et al. "Fractal properties of autoregressive spectrum and its application on weak target detection in sea clutter background", IET Radar Sonar Navigat., 9(8), Kuala Lumpur, Malaysia, pp. 1070-1077 (2015).
21. Sohn, K.J., Li, H., and Himed, B. "Parametric GLRT for multichannel adaptive signal detection", IEEE Trans. Signal Process., 55(11), pp. 5351-5360 (2007).
22. Wang, P., Li, H., and Himed, B. "A new parametric GLRT for multichannel adaptive signal detection", IEEE Trans. Signal Process., 58(1), pp. 317-325 (2010).
23. Crouse, D.F. "Basic tracking using nonlinear continuous-time dynamic models", IEEE M. Aerosp. Electron. Syst., 30(2), pp. 4-41 (2015).
24. Jahanbakhshi, S., Pishvaie, M.R., and Boozarjomehry, R.B. "Characterization of three-phase  flow in porous media using the ensemble Kalman filter", Scientia Iranica, 24(3), pp. 1281-1301 (2017).
25. Kiani, M. and Pourtakdoust, S.H. "Spacecraft attitude and system identification via marginal modified unscented Kalman filter utilizing the sun and calibrated three-axis-magnetometer sensors", Scientia Iranica, 21(4), pp. 1451-1460 (2014).
26. Taban, M.R. and Sheikh Mozaffari, A. "Adaptive radar signal detection in Gaussian clutter with autoregressive model using Kalman filter", Journal of Radar, 2(3), pp. 1-12 (2014).
27. Skolnik, M.I., Introduction to Radar Systems, 3rd Ed., McGraw-Hill, New York (2001).
28. Aubry, A., De Maio, A., Pallotta, L., et al. "Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions", IEEE Trans. Signal Process., 61(20), pp. 4949-4961 (2013).
29. Haykin, S., Kalman Filtering and Neural Networks, Wiley, New York (2001).
30. Kay, S.M., Fundamentals of Statistical Signal Processing, 2, Prentice Hall, New Jersey (1993).