Inverse Design of a Centrifugal Pump on the Meridional Plane Using Ball-Spine Algorithm

Document Type : Article

Authors

1 Department of Mechanical Engineering, University of Tabriz, P.O. Box 51666-14766, Tabriz, Iran.

2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran.

Abstract

In this work, an inverse design algorithm called Ball-Spine (BSA) is developed as a quasi-3D method and applied to the meridional plane of a centrifugal pump impeller in an effort to improve its performance. In this method, numerical analyses of viscous flow field in the passage between two blades are coupled with BSA to modify the corresponding hub and shroud geometries. Here, full 3D Navier-Stokes equations are solved within a thin plane of flow instead of solving inviscid, quasi-3D flow equations in the meridional plane. To demonstrate the validity of the present work, the performance of a centrifugal pump is first numerically investigated, and then compared against available experimental data. Defining a target pressure distribution on the hub and shroud surfaces of the flow passage, a new impeller geometry is then obtained in accordance with the modified pressure distribution. The results indicate a good rate of convergence and desirable stability of BSA in the design of rotating flow passages. Overall, the proposed design method resulted in the following major improvements: an increase in static pressure along the streamline, 5% of increase in the pump total head and delay in the onset of flow cavitation inside the impeller.

Keywords

Main Subjects


References:
1.    Dang, T., Isgro, V. “Euler-based inverse method for turbomachine blades. I-Two-dimensional cascades”, AIAA journal, 33(12), pp. 2309-2315 (1995).
2.    Dang, T., Damle, S., Qiu, X. “Euler-based inverse method for turbomachine blades, part 2: three-dimensional flows”, AIAA journal, 38(11), pp. 2007-2013 (2000).
3.    Van Rooij, M., Dang, T., Larosiliere, L. “Improving aerodynamic matching of axial compressor blading using a three-dimensional multistage inverse design method”, Journal of Turbomachinery, 129(1), pp. 108-118 (2007).
4.    Qiu, X., Ji, M., Dang, T. “Three-dimensional viscous inverse method for axial blade design”, Inverse Problems in Science and En-gineering, 17(8),  pp.1019-1036 (2009).
5.    Tiow, W., Zangeneh, M. “Application of a three-dimensional viscous transonic inverse method to NASA rotor 67”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216(3), pp. 243-255 (2002).
6.    Yang, J., Wu, H. “The solution existence and uniqueness of the inverse method based on transpiration boundary condition”, J. Propul. Technology, 36, pp. 579-586 (2015).
7.    Demeulenaere, A., Van den Braembussche, R. “Three-dimensional inverse method for turbomachinery blading design”, ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, pp. V001T01A007-V001T01A007 (1996).
8.    Daneshkhah, K., Ghaly, W. “Aerodynamic inverse design for viscous flow in turbomachinery blading”, Journal of propulsion and power, 23(4), pp. 814-820 (2007).
9.    Roidl, B., Ghaly, W. “Redesign of a low speed turbine stage using a new viscous inverse design method”, Journal of turbomachinery, 133(1), pp. 011009 (2011).
10.    Mileshin, V.I., Orekhov, I.K., Shchipin, S.K., Startsev, A.N. “3d inverse design of transonic fan rotors efficient for a wide range of rpm”, ASME Turbo Expo 2007: Power for Land, Sea, and Air, pp. 341-352 (2007).
11.    van Rooij, M., Medd, A. “Reformulation of a three-dimensional inverse design method for application in a high-fidelity CFD environment”, ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, pp. 2395-2403 (2012).
12.    Zhu, Y.-L., Wang, Z.-M., Chen, H.-S., Tan, C.-Q. “Full 3-D inverse design optimization method for turbomachinery blade”, Journal of aerospace power, 27(5), pp. 1045-1053 (2012).
13.    Yang, J., Liu, Y., Wang, X., Wu, H. “An improved steady inverse method for turbomachinery aerodynamic design”, Inverse Prob-lems in Science and Engineering, 25(5), pp. 633-651 (2017).
14.    Nili-Ahmadabadi, M., Poursadegh, F. “Centrifugal compressor shape modification using a proposed inverse design method”, Journal of Mechanical Science and Technology, 27 (3), pp. 713-720 (2013).
15.    Poursadegh, F., Hajilouy-Benisi, A., Nili-Ahmadabadi, M. “A Novel Quasi-3D Design Method for Centrifugal Compressor Impeller on the Blade-to-Blade Plane”, ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, pp. 1155-1162 (2011).
16.    Nili-Ahmadabadi, M., Poursadegh, F. “Optimization of a seven-stage centrifugal compressor by using a quasi-3D inverse design method”, Journal of Mechanical Science and Technology, 27(11), pp. 3319-3330 (2013).
17.    Madadi, A., Kermani, M., Nili-Ahmadabadi, M. “Application of the Ball-Spine Algorithm to design axial-flow compressor blade” , Scientia Iranica. Transaction B, Mechanical Engineering, 21(6) (2014).
18.    Madadi, A., Kermani, M., Nili-Ahmadabadi, M. “Aerodynamic design of S-Shaped diffusers using ball–spine inverse design method”, Journal of Engineering for Gas Turbines and Power, 136(12), pp. 122606 (2014).
19.    Arbabi, A., Ghaly, W. “Inverse Design of Turbine and Compressor Stages Using a Commercial CFD Program”, ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, V06BT37A045-V06BT37A045 (2013).
20.    Arbabi, A., Ghaly, W., Medd, A. “Aerodynamic Inverse Blade Design of Axial Compressors in Three-Dimensional Flow Using a Commercial CFD Program”, ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, V02BT41A055-V02BT41A055 (2017).
21.    Ramamurthy, R., Roidl, B., Ghaly, W. “A viscous inverse design method for internal and external flow over airfoils using CFD techniques”, V ECCOMAS CFD, (2010).
22.    Hajilouy-Benisi, A., Nili-Ahmadabadi, M., Durali, M., Ghadak, “Duct Design in Subsonic and Supersonic Flow Regimes with and without Normal Shock Waves Using Flexible String Algorithm”, Scientia Iranica, 17(3) (2010).
23.    Chen, C., Zhu, B., Singh, PM., Choi, YD. “Design of a pump-turbine based on the 3D inverse design method”, KSFM J. Fluid Mach., 18(1), pp. 20-8 (2018).
24.    Lee, S. “Inverse design of horizontal axis wind turbine blades using a vortex line method”, Wind Energy, 18(2), pp. 253-66 (2015).
25.    Albanesi, A., Fachinotti, V., Peralta, I., Storti, B., Gebhardt, C. “Application of the inverse finite element method   to design wind turbine blades”, Composite Structures, 161, pp. 160-72 (2017).
26.    Luo, J., Tang, X., Duan, Y., Liu, F. “An  iterative inverse  design  method  of  turbomachinery  blades  by using proper orthogonal decomposition”, In ASME Turbo Expo 2015: Turbine  Technical  Conference  and Exposition 2015 Jun 15, V02BT39A026- V02BT39A026 (2015).
27.    Muntean, S., Draghici, I., Gînga, G., Anton, LE., Baya, A. “Hydrodynamic design of a storage pump impeller using inverse method and experimental investigation of the global performances”, WasserWirtschaft Extra., 1, pp. 28-32 (2015).
28.    Moghadassian, B., Sharma, A. “Inverse design of single-and multi-rotor horizontal axis wind turbine blades using computational fluid dynamics”, Journal of Solar Energy Engineering, 140(2), pp. 021003 (2015).
29.    GS, A., Lal, SA. “Inverse design of airfoil using vortex element method”, International Journal of Fluid Machinery and Systems, 11(2), pp. 163-70 (2018).
30.    Greitzer, E.M., Tan, C.S., Graf, M.B. “Internal Flow: Concepts and Applications”, Cambridge University Press, (2007).
31.    Nili-Ahmadabadi, M., Durali, M., Hajilouy-Benisi, A. “A novel quasi 3-D design method for centrifugal compressor meridional plane”, ASME Turbo Expo 2010: Power for Land, Sea, and Air, pp. 919-931(2010).
32.    Nili-Ahmadabadi, M., Poursadegh, F., Shahhosseini, M.R. “Performance Improvement of a Centrifugal Compressor Using a Developed 3D Inverse Design Method”, ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, pp. 201-210 (2012).
33.    Ahmadabadi, M.N., Ghadak, F., Mohammadi, M. “Subsonic and transonic airfoil inverse design via ball-spine algorithm”, Computers & Fluids, 84, pp. 87-96 (2013).