References:
[1] Duerig, T., Tolomeo, D. and Wholey, M. ،،An overview of superelastic stent Design”, Min Invas Ther and Allied Technol, 9(3/4), pp. 235–246 (2000).
[2] Stoeckel, D., Pelton, A.R. and Duerig, T. ،،Self-expanding Nitinol stents: material and design considerations”, Eur Radiol, 14, pp. 292–301 (2004).
[3] Matsui S.O, Terayama N, Kobayashi S. ،،Clinical Application of a Curved Nitinol Stent-Graft for Thoracic Aortic Aneurysms”, Endovc Ther, 10, pp. 20–28 (2003).
[4] Davies J.E. ،،Endovascular Repair of Descending Thoracic Aortic Aneurysm: Review of Literature Thoracic”, Cardiovc Surg, 21, pp.341-346(2009).
[5] Canic S, Ravi-Chandar K, Krajcer Z. ،،Mathematical model analysis of Wall stent and AneuRx – dynamic responses of bare-metal endoprosthesis compared with those of stent-graft” ,Tex Heart. I. J, 32, pp.502–506(2005).
[6] Patrick, B., Snowhill, B., John, L., Randall, L. and Frederick, H.،،Characterization of Radial Forces in Z Stents”, Investigative Radiology, 36 (9), pp.521–530 (2001).
[7] Whitcher, F.D. ،،Simulation of in vivo loading conditions of Nitinol vascular stent structures”, Comput. Struct, 64 (5-6), pp. 1005-1011 (1997).
[8] Petrini, L., Migliavacca, F., Massarotti, P., Schievano, S., Dubini, G. and Auricchio, F. ،،Computational studies of shape memory alloy behavior in biomedical applications”, J. Biomech. Eng, 127, pp. 716-725 (2005).
[9] Kleinstreuer, C., Li, Z,. Basciano, C., Seelecke, S. and Farber, M. ،،Computational mechanics of Nitinol stent grafts”, J.Biomech, 41, pp. 2370–2378 (2008).
[10] Beule, M., Cauter, S., Mortier, P., Loo, D., Impec, R., Verdonck, P. and Verhegghe, B. ،،Virtual optimization of self-expandable braided wire stents”, Med. Eng, 31, pp. 448–453 (2009).
[11] Silber, G., Alizadeh, M. and Aghajani, A. ،،Finite element analysis for the design of self-expandable Nitinol stent in an artery”, Int. J. Energy. Tech, 2 (19), pp. 1–7 (2010).
[12] Merwe H.V.D, Reddy B. D, Zilla P. ،،A computational study of knitted Nitinol meshes for their prospective use as external vein reinforcement” ,J. Biomech, 41, pp. 1302–1309(2008).
[13] Fortier, A., Gullapalli, V and Mirshams, R. ،، Review of biomechanical studies of arteries and their effect on stent performance”, IJC Heart & Vessels, 4, pp.12–18(2014).
[14] Auricchio, F., Conti, M., Morganti, S. and Reali, A. ،، Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach”, Comput Methods Biomech Biomed Engin, 17(12), pp. 1347-1357 (2014).
[15] Pauck , R.G. and Reddy, B.D. ،، Computational analysis of the radial mechanical performance of poly-L-lactic acid (PLLA) coronary artery stents”, Med. Eng & Phy, 37, pp. 7–12 (2015).
[16] Jung, T and Kim, J. Y. ،، Finite element structural analysis of self-expandable stent deployment in a curved stenotic artery”, J.Mech. Sci and Tech, 30 (7), pp. 3143-3149 (2016).
[17] Guerchais, R., Scalet, G., Constantinescu, A. and Auricchio, F. ،، Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue”, J.Fatigue, 87, pp. 405–417 (2016).
[18] Bressloff, N.W., Ragkousis, G and Curzen, N. ،، Design Optimisation of Coronary Artery Stent Systems”, An.Biomed. Eng., 44, pp. 357–367 (2016).
[19] Altnji, H., Bou-Saïd,B and Walter,H. ،، Morphological and stent design risk factors to prevent migration phenomena for a thoracic aneurysm: A numerical analysis”, Med. Eng.phys, 37,pp.23-33 (2015).
[20] Nathan, A., Kobayashi, T and Giri, J. ،، Nitinol Self-Expanding Stents for the Superficial Femoral Artery”, Interv.Card. Clin, 6, pp. 227–233 (2017).
[21] Wang, R., Zuo, H., Yang, Y.M. and Yang, B. ،، Finite element simulation and optimization of radial resistive force for shape memory alloy vertebral body stent ”, J.Intel. Mater. Sys. Struct, 28(15), pp. 2140–2150 (2017).
[22] Maleckis, K., Anttila, E., Aylward, P. and Poulson, W. ،، Nitinol Stents in the Femoropopliteal Artery: A Mechanical Perspective on Material, Design, and Performance”, Ann. Biomed. Eng, 46(5), pp. 684-704 (2018).
[23] Migliavacca, F., Petrini, L., Massarotti, P., Schievano, S., Auricchio, F. and Dubini, G. ،،Stainless and shape memory alloy coronary stents, a computational study on the interaction with the vascular wall”, Biomech. Model .Mechanobiol, 2 (4), pp. 205–217 (2004).
[24] Terriault, P., Brailovski. V.and Gallo, R. ،،Finite element modeling of a progressively expanding shape memory stent”, J.Biomech, 39 (15), pp. 2837-44 (2006).
[25] Auricchio, F., Conti, M., Beule, M., Santis, G. and Verhegghe, B. ،،Carotid artery stenting simulation: From patient-specific images to finite element analysis”, Med. Eng.phys,33, pp. 281-289 (2011).
[26] Lorenzo V, Díaz-Lantada A, Lafont P. ،،Physical ageing of a PU-based shape memory polymer: Influence on their applicability to the development of TAA devices”, Mater & Des, 30, pp.2431-2434(2009).
[27] Elaraby A and Moratal D. ،،A generalized entropy-based two-phase threshold algorithm for noisy medical image edge detection”, Sci. Iranica D 24(6), pp. 3247-3256(2017).
[28] Zendehbudi G.R. ،،Efects of non-uniform wall properties on stress distribution in an abdominal aortic aneurysm, considering nonlinear constitutive equations”, Sci. Iranica B 21(3),pp. 620-627(2014).
[29] Nematzadeh F, Sadrnezhaad S.K. ،،Effects of material properties on mechanical performance of Nitinol stent designed for femoral artery: Finite element analysis”, Scientia Iranica, 19, pp.1564–1571(2012).
[30] Liu, X., Wang, Y., Yang, D. and Qi, M. ،،The effect of ageing treatment on shape-setting and superelasticity of a Nitinol stent”, Mater. Charact.,59, pp. 402–406 (2008).
[31] Lubliner, J. and Auricchio, F. ،،Generalized plasticity and shape memory alloy”, Int. J.Solids and Struct, 33, pp. 991–1003 (1996).
[32] Auricchio, F. and Taylor, R. ،،Shape-memory alloys: modeling and numerical simulations of the finite-strain super elastic behavior”, Compu. Meth. Appl. Mech .Eng, 143, pp. 175–94 (1996).
[33] Auricchio, F. and Taylor, R. ،،Shape-memory alloys: Modeling and numerical simulations of the finite-strain superelastic behavior”, Compu. Meth. Appl. Mech .Eng, 143 (1-2), pp. 175-194 (1997).
[34] Rebelo, N., Walker, N. and Foadian, H. ،،Simulation of implantable stents”, In: Abaqus user’s conference, 143, pp. 421–34 (2001).
[35] Conti, M., Beule, M., Mortier, P., Loo, D., Verdonck, P., Vermassen, F., Segers, P., Auricchio, F. and Verhegghe, B. ،،Nitinol Embolic Protection Filters: Design Investigation by Finite Element Analysis”, J. Mater. Eng. Perform, 18, pp. 787–792 (2009).
[36] Auricchio, F., Coda, A., Reali, A. and Urbano, M. ،،SMA Numerical Modeling versus Experimental Results: Parameter Identification and Model Prediction Capabilities”, J. Mater. Eng. Perform, 18, pp. 649–654 (2009).
[37] Arghavani, J., Auricchio, F., Naghdabadi, R. and Sohrabpour, S. ،،A 3-D phenomenological constitutive model for shape memory alloys under multiracial loadings”, Int. J. Plasticity, 26, pp. 976-991 (2010).
[38] Khalil Allafi J, Ren X and Eggeler G. ،،The mechanism of multistage martensite transformation in aged Ni-rich NiTi shape memory alloys”, Acta Mater, 50, pp.793-803(2002).
[39] Prince A.G, Quarini G.L, Morgan J.E. ،،Thermomechanical response of 50.7%Ni-Ti
alloy in the pseudoelastic regime”, Mater. Sci. Tech, 19, pp. 561-565(2003).
[40] Boyd J.G and Lagoudas D.C A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy (1996).
[41] Qidwai, M.A., Lagoudas, D.C. ،، Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms”, Int. J. Num. Meth. Eng, 47, pp.1123-1168(2000).
[42] Koop, K., Lootz, D., Kranz, C., Momma, C., Becher, B. and Kieckbusch, M.،،Stent Material Nitinol – Determination of Characteristics and Component Simulation Using the Finite Element Method”, Prog. in Biomed. Research, 6 (3), pp. 237–245 (2001).
[43] Gong, X., Duerig, T., Pelton, A., Rebelo, N. and Perry, K.،،Finite element analysis and experimental evaluation of superelastic Nitinol stents”, In Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference – SMST (2003).
[44] Gideon, V., Kumar, P. and Mathew, L.،،Finite Element Analysis of the Mechanical Performance of Aortic Valve Stent Designs”, Trends Biomater.Artif.Organs, 23 (1), pp. 16-20 (2009).
[45] Salaheldin, M., Zilla, S. and Franz, T. ،،A. Computational Study of Structural Designs for a Small-Diameter Composite Vascular Graft Promoting Tissue Regeneration”, Cardiovascular Eng. Tech, 1 (4), pp. 269–281 (2010).
[46] Auricchio, F., Conti, M., Morganti, S. and Reali, A. ،،Shape Memory Alloy: from Constitutive Modeling to Finite Element Analysis of Stent Deployment”, CMES, 57 (3), pp. 225-243 (2010).
[47] Pelton, A.R., Schroeder, V., Mitchell, M., Gong, X., Barneya, M., Robertson, S. ،،Fatigue and durability of Nitinol stents”, J. Mech. Behav.Biomed. Mater, 1, pp. 153–164 (2008).
[48] Santillo, M. ،،Fracture and crack propagation study of a Superficial Femoral Artery Nitinol stent”, Ms Thesis University of Pavia, Italy (2008).
[49] Wang, R., Ravi-Chandar, K. ،،Mechanical response of a metallic aortic stent – Part I: Pressure diameter relationship”, J. Appl.Mech, 71,pp. 697–705(2004a).
[50] Wang, R., Ravi-Chandar, K, ،، Mechanical response of a metallic aortic stent – Part II: A beam on elastic foundation model”, J. Appl.Mech, 71, pp.706–712 (2004b).
[51] Wu, W., Qi, M., Liu, X., Yang, D. and Wang, W. ،،Delivery and release of Nitinol stent in carotid artery and their interactions: a finite element analysis”, J.Biomech, 40 (13), pp. 3034-40 (2007).