References:
1. Agrawal, R., Imielinski, T., and Swami, A. "Mining association rules between sets of items in large databases", In ACM SIGMOD Record, 22(2), pp. 207- 216 (June 1993).
2. Haeri, A. and Tavakkoli-Moghaddam, R. "Developing a hybrid data mining approach based on multiobjective particle swarm optimization for solving a traveling salesman problem", Journal of Business Economics and Management, 13(5), pp. 951-967 (2012).
3. Soysal, O.M. "Association rule mining with mostly associated sequential patterns", Expert Systems with Applications, 42(5), pp. 2582-2592 (2015).
4. Rana, M. and Mann, P.S. "Analysis of MFGA to extract interesting rules" International Journal of Computer Applications, 84(3), pp. 15-21 (2013).
5. Alvarez, V.P. and Vazquez, J.M. "An evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretization", Expert Systems with Applications, 39(1), pp. 585-593 (2012).
6. Miller, R.J. and Yang, Y. "Association rules over interval data", ACM SIGMOD Record, 26(2), pp. 452- 461 (1997).
7. Moslehi, P., Bidgoli, B.M., Nasiri, M., and Salajegheh, A. "Multi-objective numeric association rules mining via ant colony optimization for continuous domains without specifying minimum support and minimum confidence", International Journal of Computer Science Issues (IJCSI), 8(5), pp. 1-34 (2011).
8. Ehrgott, M., Multicriteria Optimization, 491. Springer Science & Business Media (2005).
9. Coello, C.A.C., Lamont, G.B., and Van Veldhuizen, D.A., Evolutionary Algorithms for Solving Multi- Objective Problems, Springer, 800 (2002).
10. Coello, C.A.C., Lamont, G.B., and Van Veldhuizen, D.A., Evolutionary Algorithms for Solving Multi- Objective Problems, 5, New York: Springer (2007).
11. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, 16, John Wiley & Sons (2001).
12. Kaya, M. and Alhajj, R. "Genetic algorithm based framework for mining fuzzy association rules", Fuzzy Sets and Systems, 152(3), pp. 587-601 (2005).
13. Kaya, M. and Alhajj, R. "Utilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules mining", Applied Intelligence, 24(1), pp. 7-15 (2006).
14. Alatas, B. and Akin, E. "Rough particle swarm optimization and its applications in data mining", Soft Computing, 12(12), pp. 1205-1218 (2008).
15. Ayubi, S., Muyeba, M.K., Baraani, A., et al. "An algorithm to mine general association rules from tabular data", Information Sciences, 179(20), pp. 3520-3539 (2009).
16. Nasiri, M., Taghavi, L.S., and Minaee, B. "Multiobjective rule mining using simulated annealing algorithm", Journal of Convergence Information Technology, 5(1), pp. 60-68 (2010).
17. Qodmanan, H.R., Nasiri, M., and Minaei-Bidgoli, B. "Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence", Expert Systems with Applications, 38(1), pp. 288-298 (2011).
18. Djenouri, Y., Drias, H., and Chemchem, A. "A hybrid bees swarm optimization and tabu search algorithm for association rule mining", In Nature and Biologically Inspired Computing (NaBIC), 2013 World Congress on IEEE pp. 120-125, (Aug, 2013).
19. Agbehadji, I.E., Fong, S., and Millham, R. "Wolf search algorithm for numeric association rule mining", In Cloud Computing and Big Data Analysis (ICCCBDA), 2016 IEEE International Conference on IEEE pp. 146-151 (July, 2016).
20. Can, U. and Alatas, B. "Automatic mining of quantitative association rules with gravitational search algorithm", International Journal of Software Engineering and Knowledge Engineering, 27(3), pp. 343- 372 (2017).
21. Erickson, M., Mayer, A., and Horn, J. "The niched Pareto genetic algorithm 2 applied to the design of groundwater remediation systems", In International Conference on Evolutionary Multi-Criterion Optimization, (pp. 681-695), Springer, Berlin, Heidelberg (March, 2001).
22. Alatas, B. and Akin, E. "An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules", Soft Computing, 10(3), pp. 230-237 (2006).
23. Alcala-Fdez, J., Flugy-Pape, N., Bonarini, A., and Herrera, F. "Analysis of the effectiveness of the genetic algorithms based on extraction of association rules", Fundamental Informaticae, 98(1), pp. 1-14 (2010).
24. Mata, J., Alvarez, J.L., and Riquelme, J.C. "Mining numeric association rules with genetic algorithms", In Artificial Neural Nets and Genetic Algorithms, pp. 264-267, Springer, Vienna (2001).
25. Mata, J., Alvarez, J.L., and Riquelme, J.C. "Discovering numeric association rules via evolutionary algorithm", Advances in Knowledge Discovery and Data Mining, pp. 40-51 (2002).
26. Salleb-Aouissi, A., Vrain, C., and Nortet, C. "Quant- Miner: A genetic algorithm for mining quantitative association rules", In IJCAI, 7, pp. 1035-1040 (2007, January).
27. Taboada, K., Gonzales, E., Shimada, K., et al. "Association rule mining for continuous attributes using genetic network programming", IEEJ Transactions on Electrical and Electronic Engineering, 3(2), pp. 199- 211 (2008).
28. Yan, X., Zhang, C., and Zhang, S. "Genetic algorithmbased strategy for identifying association rules without specifying actual minimum support", Expert Systems with Applications, 36(2), pp. 3066-3076 (2009).
29. Martinez-Ballesteros, M., Martinez- Alvarez, F., Troncoso, A., and Riquelme, J.C. "An evolutionary algorithm to discover quantitative association rules in multidimensional time series", Soft Computing, 15(10), p.2065 (2011).
30. Martin, D., Rosete, A., Alcala-Fdez, J., and Herrera, F. "A multi-objective evolutionary algorithm for mining quantitative association rules", In Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on, pp. 1397-1402, IEEE (November, 2011).
31. Minaei-Bidgoli, B., Barmaki, R., and Nasiri, M. "Mining numerical association rules via multi-objective genetic algorithms", Information Sciences, 233, pp. 15-24 (2013).
32. Martin, D., Rosete, A., Alcala-Fdez, J., and Herrera, F. "QAR-CIP-NSGA-II: A new multi-objective evolutionary algorithm to mine quantitative association rules", Information Sciences, 258, pp. 1-28 (2014).
33. Martin, D., Alcala-Fdez, J., Rosete, A., and Herrera, F. "NICGAR: A niching genetic algorithm to mine a diverse set of interesting quantitative association rules", Information Sciences, 355, pp. 208-228 (2016).
34. Indira, K. and Kanmani, S. "Mining association rules using hybrid genetic algorithm and particle swarm optimisation algorithm", International Journal of Data Analysis Techniques and Strategies, 7(1), pp. 59-76 (2015).
35. Agarwal, A. and Nanavati, N. "Association rule mining using hybrid GA-PSO for multi-objective optimisation", In Computational Intelligence and Computing Research (ICCIC), 2016 IEEE International Conference on, pp. 1-7, IEEE (December, 2016).
36. Sarkar, S., Lohani, A., and Maiti, J. "Genetic algorithm-based association rule mining approach towards rule generation of occupational accidents", In International Conference on Computational Intelligence, Communications, and Business Analytics, pp. 517-530, Springer, Singapore (March, 2017).
37. Djenouri, Y., Belhadi, A., Fournier-Viger, P., and Fujita, H. "Mining diversified association rules in big datasets: A cluster/GPU/genetic approach", Information Sciences, 459, pp. 117-134 (2018).
38. Kumar, P. and Singh, A.K. "Efficient generation of association rules from numeric data using genetic algorithm for smart cities", In Security in Smart Cities: Models, Applications, and Challenges pp. 323- 343, Springer, Cham. (2019).
39. Martinez-Ballesteros, M., Bacardit, J., Troncoso, A., and Riquelme, J.C. "Enhancing the scalability of a genetic algorithm to discover quantitative association rules in large-scale datasets", Integrated Computer- Aided Engineering, 22(1), pp. 21-39 (2015).
40. Padillo, F., Luna, J.M., Herrera, F., et al. "Mining association rules on big data through MapReduce genetic programming", Integrated Computer-Aided Engineering, 25(1), pp. 31-48 (2018).
41. Martin, D., Martinez-Ballesteros, M., Garcia-Gil, D., et al. "MRQAR: A generic MapReduce framework to discover quantitative association rules in big data problems", Knowledge-Based Systems, 153, pp. 176- 192 (2018).
42. Haery, A., Salmasi, N., Yazdi, M.M., and Iranmanesh, H. "Application of association rule mining in supplier selection criteria", World Academy of Science, Engineering and Technology, 40(1), pp. 358-362 (2008).
43. Srikant, R. and Agrawal, R. "Mining quantitative association rules in large relational tables", In AcmSigmod Record, 25(2), pp. 1-12, ACM (1996, June).
44. Shenoy, P.D., Srinivasa, K.G., Venugopal, K.R., and Patnaik, L.M. "Dynamic association rule mining using genetic algorithms", Intelligent Data Analysis, 9(5), pp. 439-453 (2005).
45. Kuo, R.J., Chao, C.M., and Chiu, Y.T. "Application of particle swarm optimization to association rule mining", Applied Soft Computing, 11(1), pp. 326-336 (2011).
46. Beiranvand, V., Mobasher-Kashani, M., and Bakar, A.A. "Multi-objective PSO algorithm for mining numerical association rules without a priori discretization", Expert Systems with Applications, 41(9), pp. 4259-4273 (2014).
47. Freitas, A.A., Data Mining and Knowledge Discovery with Evolutionary Algorithms, Springer (2002).
48. Ghosh, A. and Nath, B. "Multi-objective rule mining using genetic algorithms", Information Sciences, 163, pp. 123-133 (2004).
49. Prajapati, D.J., Garg, S., and Chauhan, N.C. "Interesting association rule mining with consistent and inconsistent rule detection from big sales data in distributed environment", Future Computing and Informatics Journal, 2(1), pp. 19-30 (2017).
50. Merceron, A. and Yacef, K. "Interestingness measures for association rules in educational data", EDM, 8, pp. 57-66 (2008).
51. Rokh, B., Mirvaziri, H., and Eftekhari, M. "Proposing an efficient combination of interesting measures for mining association rules via NSGA-II", In Technology, Communication and Knowledge (ICTCK), 2014 International Congress on, pp. 1-7, IEEE (November, 2014).
52. Luna, J.M., Romero, J.R., and Ventura, S. "Grammarbased multi-objective algorithms for mining association rules", Data & Knowledge Engineering, 86, pp. 19-37 (2013).
53. Hsieh, Y., Lee, P., and You, P. "Immune based evolutionary algorithm for determining the optimal sequence of multiple disinfection operations", Scientia Iranica, 26(2), pp. 959-974 (2019). DOI:10.24200/sci.2018.20324.
54. Sadeghi, H., Zolfaghari, M., and Heydarizade, M. "Estimation of electricity demand in residential sector using genetic algorithm approach", Journal of Industrial Engineering & Production Research, 22(1), pp. 43-50 (2011).
55. Ostadi, B., MotamediSedeh, O., Husseinzadeh Kashan, A., and Amin-Naseri, M. "An intelligent model to predict the day-ahead deregulated market clearing price: a hybrid NN, PSO and GA approach", Scientia Iranica, 26(6), pp. 3846-3856 (2019). DOI: 10.24200/sci.2018.50910.1909 .
56. Russell, S.J. and Norvig, P., Artificial Intelligence A Modern Approach, Pearson Education (2008).
57. Goldberg, D.E., Genetic Algorithms in Search Optimization and Machine Learning, Addison Wesley, p. 41 (1989).
58. Sonagara, D. and Badheka, S. "Comparison of basic clustering algorithms", Int. J. Comput. Sci. Mob. Comput, 3(10), pp. 58-61 (2014).
59. Dabbagh, H., GhodratiAmiri, G., and Shaabani, S. "Modal data-based approach to structural damage identification by means of imperialist competitive optimization algorithm", Scientia Iranica, 25(3), pp. 1070-1080 (2018). DOI: 10.24200/sci.2017.4590.
60. Martinez-Ballesteros, M. and Riquelme, J.C. "Analysis of measures of quantitative association rules", In International Conference on Hybrid Artificial Intelligence Systems, pp. 319-326, Springer, Berlin, Heidelberg (May, 2011).
61. Picek, S. and Golub, M. "Comparison of a crossover operator in binary-coded genetic algorithms", WSEAS Transactions on Computers, 9, pp. 1064-1073 (2010).
62. Guvenir, H. and Uysal, I., Bilkent University Function Approximation Repository (2000). <http://funapp.cs.bilkent.edu.tr/>.
63. Moslehi, F., Haeri, A., and Moini, A. "Analyzing and investigating the use of electronic payment tools in Iran using data mining techniques", Journal of AI and Data Mining, 6(2), pp. 417-437 (2018). DOI: 10.22044/jadm.2017.5352.1643.