Refrences:
1.Kaveh, A. and Zolghadr, A. An improved charged system search for structural damage identi_cation in beams and frames using changes in natural frequencies", Int. J. of Optim. Civil. Eng., 3(2), pp. 321-340 (2012).
2. Kaveh, A. and Zolghadr, A. An improved CSS for damage detection of truss structures using changes in natural frequencies", Adv Eng Softw, 80, pp. 93-100 (2015).
3. Cimellaro, G.P., Pianta, S., and Destefano, A. Output-only modal identi_cation of ancient L'Aquila city hall and civic tower", ASCE J Struct Eng., 138(4), pp. 481-491 (2012).
4. Zhang, J., Prader, J., Moon, F., et al. Experimental vibration analysis for structural identi_cation of a long span suspension bridge", ASCE J Eng Mech., 139(6), pp. 748-759 (2013). 5. Kaveh, A. and Maniat, A. Damage detection based on MCSS and PSO using modal data", Smart Structures and Systems, 5(15), pp. 1253-1270 (2015). 6. Kaveh, A. and Zolghadr, A. A guided modal strain energy based approach for structural damage identi _cation using tug of war optimization algorithm", ASCE, J Comput Civil Eng., 31(4), pp. 1-12 (2017). DOI:04017016 7. Kaveh, A., Vaez, S.R. Hoseini, and Hosseini, P. Enhanced vibrating particle system algorithm for damage identi_cation of truss structure", Sci Iran, 26(1), pp. 246-256 (2019). 8. Zimmerman, D.C. and Kaouk, M. Structural damage detection using a minimum rank update theory", J Vib Acoust, 116, pp. 222-231 (1994). 9. Lu, Q., Ren, G., and Zhao, Y. Multiple damage location with exibility curvature and relative frequency change for beam structures", J Sound Vib, 253(5), pp. 1101-1114 (2002). 10. Grande, E. and Imbimbo, M. A multi-stage approach for damage detection in structural systems based on exibility", Mech Syst Signal Process, 76-77, pp. 455- 475 (2016). 11. Zhang, Z. and Aktan, A.E. Application of modal exibility and its derivatives in structural identi_cation", Res Nondestruct Eval, 10, pp. 43-61 (1998). 12. Wang, J. and Qiao, P. Improved damage detection for beam-type structures using a uniform load surface", Struct Health Monit, 6, pp. 99-112 (2007). 13. Bernal, D. and Gunes, B. Flexibility based approach for damage characterization: benchmark application", J Eng Mech, 130, pp. 61-70 (2004). 14. Yan, W.J. and Ren, W.X. Closed-form modal exibility sensitivity and its application to structural damage detection without modal truncation error", J Vib Control, 20(12), pp. 1816-1830 (2014). 15. Zhang, J., Xu, J.C., Guo, S.L., et al. Flexibility-based structural damage detection with unknown mass for IASC-ASCE benchmark studies", Eng Struct, 48, pp. 486-496 (2013). 16. Pandey, A.K. and Biswas, M. Damage detection in structure using changes in exibility", J. Sound Vib, 169(1), pp. 3-17 (1994). 17. Hosseinzadeh, A.Z., Amiri, G.G., and Razzaghi, S.A.S., et al. Structural damage detection using sparse sensors installation by optimization procedure based on the modal exibility matrix", J Sound Vib, 381, pp. 65-82 (2016). 18. Cheng, Y.Y., Zhao, C.Y., and Zhang, J. Application of a novel long-gauge _ber bragg grating sensor for corrosion detection via a two-level strategy", Sensors, 19(4), 954, pp. 1-18 (2019). DOI: 10.3390/s19040954 19. Sazonov, E. and Klinkhachorn, P. Optimal spatial sampling interval for damage detection by curvature or strain energy mode shapes", J. Sound Vib, 285, pp. 783-801 (2005). 20. Cao, M.S. and Qiao, P.Z. Novel Laplacian scheme and multiresolution modal curvatures for structural damage identi_cation", Mech. Syst. Signal Process, 23, pp. 1223-1242 (2009). 21. Chandrashekhar, M. and Ganguli, R. Damage assessment of structures with uncertainty by using mode shape curvatures and fuzzy logic", J Sound Vib., 326, pp. 939-957 (2009). 22. Cao, M.S., Radzienski, M., and Xu, W., et al. Identi- _cation of multiple damage in beams based on robust curvature mode shapes", Mech. Syst. Signal Process, 46, pp. 468-480 (2014). 23. Guo, H. Structural damage detection using information fusion technique", Mech. Syst. Signal Process, 20(5), pp. 1173-1188 (2006). 24. Grande, E. and Imbimbo, M. A multi-stage approach for damage detection of linear system based on modal strain energy", J. Civil Struct. Health Mon, 4, pp. 107- 118 (2014). 25. Guo, T. and Xu, Z.L. Data fusion of multi-scale representations for structural damage detection", Mech. Syst. Signal Process, 98, pp. 1020-1033 (2018). 26. Peeters, B., Van der Auweraer, H., Guillaume, P., et al. The PolyMAX frequency domain method: a new standard for modal parameter estimation", Shock Vib., 11(3-4), pp. 395-409 (2004). 27. Catbas, F.N., Brown, D.L., and Aktan, A.E. Use of modal exibility for damage detection and condition 2298 Y.Y. Cheng et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 2286{2298 assessment: case studies and demonstrations on large structures", J Struct Eng., 132(11), pp. 1699-1712 (2006). 28. Reynders, E. and Roeck, G.D. Referenced-based combined deterministic-stochastic subspace identi_cation for experimental and operational modal analysis", Mech Syst Signal Process, 22(22), pp. 617-637 (2006). 29. Teager, H.M. and Teager S.M., A Phenomenological Model for Vowel Production in the Cocal Tract, College-Hill Press, San Diego (1983). 30. Kaiser, J.F. On a simple algorithm to calculate the energy of a signal", in IEEE Proceeding, ICASSP-90, pp. 381-384 (1990). 31. Shafer, G., A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ (1976).