Novel aspects of Soret and Dufour in entropy generation minimization for Williamson fluid flow

Document Type : Article

Authors

1 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan.; Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

2 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan.

3 Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Abstract

Soret and Dufour effects on MHD flow of Williamson fluid between two rotating disks are examined. Impacts of stratification, viscous dissipation and activation energy are also considered. Bejan number and entropy generation for stratified flow is discussed. The governing PDE's are converted into ODE's by using Von Kármán transformations. Convergent solution of complicated ODE's is found by homotopic procedure. The results of physical quantities are discussed through plots and numerical values. It is noted that axial and radial velocities are more for greater Weissenberg number. Temperature and concentration profiles are decreasing functions of thermal and solutal stratification parameters respectively. Entropy and Bejan number show the opposite trends for higher Weissenberg number and Brinkman number.

Keywords

Main Subjects


References:
1.    Williamson R. V., “The flow of pseudoplastic materials”, Indust. Eng. Chem., 21 pp. 1108-1111 (1929).
2.    Nadeem S., Hussain S. T., Lee C., “Flow of a Williamson fluid over a stretching sheet”, Brazilian J. Chem. Eng. 30 pp. 619-625 (2013).
3.    Zehra I., Yousaf M. M., Nadeem S., Numerical solutions of Williamson fluid with pressure dependent viscosity, Results in Physics, 5 (2015) 20-25.
4.    Khan M. I., Khan T. A., Hayat T., Khan M. I. et al., “Irreversibility analysis and heat transfer performance of Williamson nanofluid over a stretched surface”, Heat Transfer Research DOI: 10.1615/HeatTransRes.2018026342 (2018).
5.    Qayyum S., Khan M. I., Hayat T. et al., “Entropy generation in dissipative flow of Williamson fluid between two rotating disks”, Int. J. Heat Mass Transf. 127 pp. 933-942 (2018).
6.    Hsiao K., “To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method”, Energy 130 pp.  (2017).
7.    Hsiao K., “Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects”, Appl. Thermal Eng. 112 pp. 1281-1288 (2017).
8.    Hsiao K., “Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature”, Int. J. Heat Mass Transf. 112 pp.   (2017).
9.    Hayat T., Farooq S., Ahmad B., “Impact of compliant walls on magnetohydrodynamics peristalsis of Jeffrey material in a curved configuration”, Sci. Iranica 25 pp. 741-750 (2018).
10.    Hsiao K., “Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet”, Appl. Thermal Eng. 98 pp. 850—861 (2016).
11.    Kármán T. V., “Über laminare and turbulente Reibung”, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1 (1921) 233-252.
12.    Hayat T., Qayyum S., Imtiaz M., Alsaedi A., “Radiative flow due to stretchable rotating disk with variable thickness”, Results Phys., 7 pp. 156—165 (2017).
13.    Khan N. A., Aziz S., Khan N. A., “MHD flow of Powell--Eyring fluid over a rotating disk”, J. Taiwan Inst. Chem. Eng., 45 pp. 2859-2867 (2014).
14.    Doh D. H., Muthtamilselvan M., “Thermophoretic particle deposition on magnetohydrodynamic flow of micropolar fluid due to a rotating disk”, Int. J. Mech. Sci., 130 pp. 350—359 (2017).
15.    Khan N. A., Aziz S., Khan N. A., “Numerical simulation for the unsteady MHD flow and heat transfer of couple stress fluid over a rotating disk”, Plos One, 9 e95423 (2014).
16.    Griffiths P. T., Stephen S. O., Bassom A. P. et al., “Stability of the boundary layer on a rotating disk for power-law fluids”, J. Non-Newtonian Fluid Mech., 207 pp. 1-6 (2014).
17.    Qayyum S., Khan M. I., Hayat T. et al., “Entropy generation in dissipative flow of Williamson fluid between two rotating disks”, Int. J. Heat Mass Transf., 127 pp. 933-942 (2018).
18.    Bestman A. R., “Natural convection boundary layer with suction and mass transfer in a porous medium”, Int. J. Eng. Research, 14 pp. 389-396 (1990).
19.    Makinde O. D., Olanrewaju P. O., Charles W. M., “Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture”, Afrika Matematika, 22 pp. 65-78 (2011).
20.    Awad F. G., Motsa S., Khumalo M., “Heat and mass transfer flow in unsteady rotating fluid flow with binary chemical reaction and activation energy”, Plos One, 9 (9) e107622 (2014).
21.    Shafique Z., Mustafa M., Mushtaq A., “Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy”, Results Phys., 6 pp.   (2016).
22.    Bejan A., “A study of entropy generation in fundamental convective heat transfer”, J. Heat Transf., 101 pp.   (1979).
23.    Amani E., Nobari M. R. H., “A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature”, Energy, 36 pp.   (2011).
24.    Hayat T., Rafiq M., Ahmad B., Asghar S., “Entropy generation analysis for peristaltic flow of nanoparticles in a rotating frame”, Int. J. of Heat Mass Transf., 108 pp.   
25.    Shit G. C., Haldar R., Mandal S., “Entropy generation on MHD flow and convective heat transfer in a porous medium of exponentially stretching surface saturated by nanofluids”, Adv. Powder Technol., 28 pp.   (2017).
26.    Afridi M. I., Qasim M., “Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation”, Int. J. Thermal Sci., 123 pp. 117-128 (2018).
27.    Govindaraju M., Ganesh N. V., Ganga B. et al., “Entropy generation analysis of magneto hydrodynamic flow of a nanofluid over a stretching sheet”, J. Egyp. Math. Soci., 23 pp.   (2015).
28.    Hayat T., Nawaz S., Alsaedi A., “Entropy generation in peristalsis with different shapes of nanomaterial”, J. Mol. Liq., 248   (2017).
29.    Hayat T., Khan M. I., Qayyum S. et al., “Entropy generation in flow with silver and copper nanoparticles”, Colloids Surfaces: A Physicochemical Eng. Aspects, 539 pp.  (2018).
30.    Rezaie N. Z., Darasi S. R. D., Zarandi M. H. F. et al., “Generalized heat transfer and entropy generation of stratified air-water flow in entrance of a mini-channel”, Sci. Iranica 24 pp. 2407-2417 (2017).
31.    Liao S. J., “Homotopy analysis method in nonlinear differential equations”, Springer, Heidelberg, Germany, 2012.
32.    Hayat T., Khan M. I., Farooq M. et al., “Stagnation point flow with Cattaneo-Christov heat flux and homogeneous--heterogeneous reactions”, J. Mol. Liq., 220 pp.   (2016).
33.    Sheikholeslami M., Hatami M., Ganji D. D., “Micropolar fluid flow and heat trans-fer in a permeable channel using analytical method”, J. Mol. Liq., 194 pp.   (2014).
34.    Hayat T., Khan M. I., Farooq M. et al., “Impact of Cattaneo--Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface”, Int. J. Heat Mass Transf., 99 pp.   (2016).
35.    Sui J., Zheng L., Zhang X. et al., “Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate”, Int. J. Heat Mass Transf., 85 pp.   (2015).
36.    Hayat T., Khan M. I., Qayyum S. et al., “Modern developments about statistical declaration and probable error for skin friction and Nusselt number with copper and silver nanoparticles”, Chin. J. Phys., 55 pp.   (2017).
37.    Turkyilmazoglu M., “Convergence accelerating in the homotopy analysis method: A new approach”, Adv. Appl. Math. Mech. 10 (4) pp. 925-947 (2018).
38.    Hayat T., Qayyum S., Imtiaz M. et al., “Impact of Cattaneo-Christov heat flux in Jeffrey fluid flow with homogeneous-heterogeneous reactions”, PLOS ONE, 11 e   (2016).
39.    Hayat T., Khan M. I., Qayyum S. et al., “Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating”, Phys. Fluids, 30   (2018).
40.    Turkyilmazoglu M., “Parametrized adomian decomposition method with optimum convergence”, Trans. Modelling Comp. Simul. 27 (4) doi:10.1145/3106373 (2017).
41.    Turkyilmazoglu M., “Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the adomian decomposition method”, Mediterranean J. Mathem. 13 4019—4037 (2016).
42.    Khan M. I., Qayyum S., Hayat T. et al., “Entropy generation minimization and statistical declaration with probable error for skin friction coefficient and Nusselt number”, Chin. J. Phys., 56 1525-1546 (2018).
Volume 27, Issue 5 - Serial Number 5
Transactions on Mechanical Engineering (B)
September and October 2020
Pages 2451-2464
  • Receive Date: 27 December 2018
  • Revise Date: 04 February 2019
  • Accept Date: 27 April 2019