Templated nanostructure silica membrane versus template-free one: Synthesis, characterization, and performance for hydrogen separation

Document Type : Article

Authors

1 - Department of Chemical Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335-1996, Iran - Nanostructure Material Research Center (NMRC), Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran

2 - Department of Chemical Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335-1996, Iran - Nanostructure Material Research Center (NMRC), Sahand University of Technology, P.O. Box:51335-1996, Tabriz, Iran

3 - Nanostructure Material Research Center (NMRC), Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran - Department of Chemical Engineering, Urmia University of Technology, Urmia, P.O. Box: 57166-93187, Iran

Abstract

An experimental study was carried out on synthesis and performance of the MTES (methyltriethoxysilane) templated and template free nanostructure silica membranes for hydrogen separation. The permeance of hydrogen, carbon dioxide and nitrogen pure gases and permselectivity and separation factor of gas mixtures were investigated at 25 °C, 100 °C and 200 °C. Activated molecular sieve with positive and negative sign and Knudsen diffusion were respectively the dominant transport mechanisms in hydrogen, carbon dioxide and nitrogen gas molecules permeances.  Although, the hydrophobic property of templated membrane is a good option for gas separation in hydrothermal conditions, the dense structure of the membrane results in lower permeances and permselectivities in comparison with template free one. Hydrogen permeance at 200 ºC and 3 bar which was measured 30.5×10-8  for template free silica membrane, decreased to 2.37  for MTES templated silica membrane. Permselectivity and separation factor of H2/N2 at the same conditions, which were 31.2 and 21 for template free membrane, reached to 21.5 and 8 for templated membrane. In addition, H2/CO2 permselectivity at the same conditions was measured for template free and templated membranes, 23.4 and 13.9, respectively.

Keywords

Main Subjects


References:
1. Ockwig, N.W. and Nenoff, T.M. "Membranes for hydrogen separation", Chem. Rev., 107, pp. 4078-4110 (2007).
2. Adhikari, S. and Fernando, S. "Hydrogen membrane separation techniques", Ind. Eng. Chem. Res., 45, pp. 875-881 (2006).
3. Lu, G.Q., Diniz da Costa, J.C., Duke, M., et al. "Inorganic membranes for hydrogen production and purification: A critical review and perspective", J. Colloid Interface Sci., 314, pp. 589-603 (2007).
4. Khatib, S.J. and Oyama, S.T. "Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD)", Sep. Purif. Technol., 111, pp. 20- 42 (2013).
5. Brinker, C.J., Ward, T.L., Sehgal, R., et al. "Ultramicroporous silica-based supported inorganic membranes", J. Membr. Sci., 77, pp. 165-179 (1993).
6. De Lange, R.S.A., Hekkink, J.H.A., and Keizer, K., et al. "Formation and characterization of supported microporous ceramic membranes prepared by sol-gel modification techniques", J. Membr. Sci., 99, pp. 57- 75 (1995).
7. Bau, J.A. and Takanabe, K. "Ultrathin microporous SiO2 membranes photodeposited on hydrogen evolving catalysts enabling overall water splitting", ACS Catal., 7, pp. 7931-7940 (2017).
8. De Vos, R. M. and Verweij, H. "Improved performance of silica membranes for gas separation", J. Membr. Sci., 143, pp. 37-51 (1998).
9. Kajama, M.N., Nwogu, N.C., and Gobina, E. "Preparation and characterization of inorganic membranes for hydrogen separation", Int. J. Hydrogen Energy, 41, pp. 8221-8227 (2016).
10. Battersbya, S., Tasaki, T., Smarta, S., et al. "Performance of cobalt silica membranes in gas mixture separation", J. Membr. Sci., 329, pp. 91-98 (2009).
11. Kageyama, N., Hacarlioglu, P., and Takagaki, A., et al. "Overcoming pressure drop losses in membrane reactors by semi-batch operation", Sep. Purif. Technol., 185, pp. 175-185 (2017).
12. Ghasemzadeh, K., Aghaeinejad-Meybodi, A., and Vaezi, M.J. et al. "Hydrogen production via silica membrane reactor during the methanol steam reforming process: experimental study", RSC Adv., 5, pp. 95823-95832 (2015).
13. Asaeda, M. and Kashimoto, M. "Sol-gel silica membranes for separation of hydrogen at high temperature separation performance and stability against steam", 5th Int. Conf. on Inor. Membr., Nagoya, Japan, pp. 172-175 (1998).
14. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization Colloid and Surface Properties, and Biochemistry, Wiley, New York (1979).
15. Kanezashi, M., Yada, K., Yoshioka, T., et al. "Organicinorganic hybrid silica membranes with controlled silica network size: Preparation and gas permeation characteristics", J. Membr. Sci., 348, pp. 310-318 (2010).
16. Kanezashi, M., Yada, K., Yoshioka, T., et al. "Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability", Am. Chem. Soc., 131, pp. 414-415 (2009).
17. Qureshi, H.F., Besselink, R., Ten Elshof, J.E., et al. "Doped microporous hybrid silica membranes for gas separation", J. Sol-Gel Sci. Technol., 75, pp. 180-188 (2015).
18. Song, H., Zhao, S., Chen, J., et al. "Hydrothermally stable Zr-doped organosilica membranes for H2/CO2 separation", Microporous Mesoporous Mater., 224, pp. 277-284 (2016).
19. Wei, Q., Wang, Y.-L., Nie, Z.-R., et al. "Facile synthesis of hydrophobic microporous silica membranes and their resistance to humid atmosphere", Microporous Mesoporous Mater., 111, pp. 97-103 (2008).
20. West, G.D., Diamond, G.G., and Holland, D., et al. "Gas transport mechanisms through sol-gel derived templated membranes", J. Membr. Sci., 203, pp. 53- 69 (2002).
21. De Vos, R.M., Maier, W.F., and Verweij, H. "Hydrophobic silica membranes for gas separation", J. Membr. Sci., 158, pp. 277-288 (1999).
22. Castricum, H.L., Qureshi, H.F., and Nijmeijer, A. et al. "Hybrid silica membranes with enhanced hydrogen and CO2 separation properties", J. Membr. Sci., 488, pp. 121-128 (2015).
23. Assa, F., Babaluo, A.A., Ghasemzadeh, K., et al. "Synthesis and performance of nanostructure templated silica membranes surface-modified by Two different procedures", Chem. Biochem. Eng. Q., 29, pp. 417-427 (2015).
24. Lee, Y.E., Kang, B.S., Hyun, S.H., et al. "Organictemplating approach to synthesis of nanoporous silica composite membranes (II): MTES-templating and CO2 separation", Sep. Sci. Technol., 39, pp. 3541-3557 (2004).
25. Moon, J.-H., Park, Y.-J., Kim, M.-B., et al. "Permeation and separation of a carbon dioxide/nitrogen mixture in a methyltriethoxysilane templating silica/ alumina composite membrane", J. Membr. Sci., 250, pp. 195-205 (2005).
26. Moon, J.-H., Bae, Y.-S., Hyun, S.-H., et al. "Equilibrium and kinetic characteristics of five single gases in a methyltriethoxysilane-templating silica/ff-alumina composite membrane", J. Membr. Sci., 285, pp. 343- 352 (2006).
27. Moon, J.-H., Bae, J.-H., Bae, Y.-S., et al. "Hydrogen separation from reforming gas using organic templating silica/alumina composite membrane", J. Membr. Sci., 318, pp. 45-55 (2008).
28. Moon, J.-H. and Lee, C.-H. "Hydrogen separation of methyltriethoxysilane templating silica membrane", AIChE J., 53, pp. 3125-3136 (2007).
29. Babaluo, A.A., Kokabi, M., and Barati, A. "Chemorheology of alumina-aqueous acrylamide gelcasting systems", J. Eur. Ceram. Soc., 24, pp. 635-644 (2004).
30. Barati, A., Kokabi, M., and Famili, M.H.N. "Drying of gelcast ceramic parts via the liquid desiccant method", J. Eur. Ceram. Soc., 23, pp. 2265-2272 (2003).
31. Babaluo, A.A., Kokabi, M., Manteghian, M., et al. "Modified model for alumina membranes formed by gel-casting followed by dip-coating", J. Eur. Ceram. Soc., 24, pp. 3779-3787 (2004).
32. Jabbari, A., Ghasemzadeh, K., Khajavi, P., et al. "Surface modification of ff-alumina support in synthesis of silica membrane for hydrogen purification", Int. J. Hydrogen Energy, 39, pp. 18585-18591 (2014).
33. Raman, N.K. and Brinker, C.J. "Organic template approach to molecular sieving silica membranes", J. Membr. Sci., 105, pp. 273-279 (1995).
34. Moon, J.-H., Bae, Y.-S., Hyun, S.-H., et al. "Equilibrium and kinetic characteristics of five single gases in a methyltriethoxysilane-templating silica/alumina composite membrane", J. Membr. Sci., 285, pp. 343- 352 (2006).
35. Lee, D.-W., Sea, B., Lee, K.-Y., et al. "Preparation and characterizaton of SiO2 composite membranes for purification of hydrogen for PEMFC", Ind. Eng. Chem. Res., 41, pp. 3594-3600 (2002).
36. Verveij, H. "Ceramic membranes: Morphology and transport", J. Mater. Sci., 38, pp. 4677-4695 (2003).
37. Ayral, A., Julbe, A., Rouessac, V., et al. "Microporous silica membrane: basic principles and recent advances", in: Membrane Science and Technology, M. Reyes, and M. Menendez, Eds., pp. 33-79 , Elsevier Science (2008).
38. Uhlhorn, R.J.R., Keizer, K., and Burggraaf, A.J. "Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes", J. Membr. Sci., 66, pp. 271-287 (1992).
39. Yoshioka, T., Nakanishi, E., Tsuru, T., et al. "Experimental study of gas permeation through microporous silica membranes", AIChE J., 47, pp. 2052-2063 (2001).
40. Boffa, V. ten, Elshof, J.E. Garcia, R., et al. "Microporous niobia-silica membranes: Influence of sol composition and structure on gas transport properties", Microporous Mesoporous Mater., 118, pp. 202- 209 (2009).
41. Galuska, J., Giddings, T., and Clelland, I. "Silica  membrane thermal and hydrothermal stability", 9th Int. Conf. on Inorg. Membr., Lillehammer, Norway, pp. 124-126 (2006).
42. Sehgal, R. and Brinker, C.J. "Supported inorganic membranes", US Patent 5772735 (1998).
43. Kim, Y.-S., Kusakabe, K., Morooka, Sh., et al. "Preparation of microporous silica membranes for gas separation", Korean J. Chem. Eng., 18, pp. 106-112 (2001).
44. Tennison, S. "Microporous ceramic membranes for gas separation processes", Contract JOE3-CT95-0018, University of Bath, UK (1998).
45. Nijmeijer, A. "Hydrogen-selective silica membranes for use in membrane steam reforming", Thesis, University of Twente, Netherlands (1999).