Asymmetrical fuzzy logic control-based MPPT algorithm for stand-alone photovoltaic systems under partially shaded conditions

Document Type : Article

Authors

Department of Electrical Engineering, Delhi Technological University, Bawana Road, Delhi, India-110042

Abstract

Partial shading conditions (PSCs) in Photovoltaic (PV) system is an inevasible situation which curtails the PV array output by exhibiting multiple peaks in its Power-Voltage (P-V) curve. The multiple peaks consist of a single global maximum power point (GMPP) and many local maximum power points (LMPP). The presence of multiple peaks makes tracking of maximum power point more difficult and demands an efficient controller to track the global peak of the P-V curve. In the present work, a novel intelligent asymmetrical Fuzzy Logic Control (AFLC) based maximum power point tracking (MPPT) algorithm has been proposed for tracking GMPP. The fuzzy membership functions of the proposed algorithm have been optimized using a heuristic approach. The algorithm has been designed, developed and analyzed using MATLAB/Simulink. Furthermore, to establish the superiority of proposed AFLC algorithm, it has been compared with conventional perturb & observe (P&O) algorithm and intelligent Fuzzy Logic Control (FLC) based algorithm for GMPP tracking and shading losses under standard test condition (STC) and partially shaded conditions.

Keywords


  1. References:

    1. Ellabban, O., Abu-Rub, H., and Blaabjerg, F. Renewable energy resources: current status, future prospects and their enabling technology", Renew. Sustain. Energy Rev., 39(C), pp. 748{764 (2014).
    2. Abdourraziq, M.A., Maarou_, M., and Ouassaid, M. A new variable step size INC MPPT method for PV systems", Int. Conf. Multimed. Comput. Syst. Proc., 55(7), pp. 1563{1568 (2014).
    3. Koutroulis, E. and Blaabjerg, F. A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions", IEEE J. Photovoltaics, 2(2), pp. 184{190 (2012).
    4. Patel, H. and Agarwal, V. Maximum power point tracking scheme for PV systems operating under partially shaded conditions", IEEE Trans. Ind. Electron, 55(4), pp. 1689{1698 (2008).
    5. Ji, Y.H., Jung, D.Y., Kim, J.G., et al. A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions", IEEE Trans. Power Electron., 26(4), pp. 1001{1009 (2011). 6. Al-Majidi, S.D., Abbod, M.F., and Al-Raweshidy, H.S. A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems", Int. J. of hydrogen Energy, 43(31), pp. 14158{14171 (2018). 7. Liu, C., Wu, B., and Cheung, R. Advanced algorithm for MPPT control of photovoltaic systems", In: Proceedings of the Canadian Solar Buildings Conference, Montreal; August, pp. 20{24 (2004). 8. Azab, M.A. New maximum power point tracking for photovoltaic systems", International Journal Electrical Electron. Engineering, 2(8), pp. 1600{1603 (2009). 9. Chaouachi, A., Kamel, R.M., and Nagasaka, K.A. Novel multi-model neuro-fuzzy-based MPPT for novel multi-model neuro-fuzzy-based MPPT for threephase grid-connected photovoltaic system photovoltaic system", Sol. Energy, 84(12), pp. 2219{2229 (2010). 10. Reisi, A.R., Moradi, M.H., and Jamasb, S. Classi_cation and comparison of maximum power point tracking techniques for photovoltaic system", Renew. Sustain. Energy Rev., 19, pp. 433{443 (2013). 11. Tsai, H.F. and Tsai, H.L. Implementation and veri _cation of integrated thermal and electrical models for commercial PV modules", Sol. Energy, 86(1), pp. 654{665 (2012). 12. Ali, O.A.M., Ali, A.Y., and Sumait, B.S. Comparison between the e_ects of di_erent types of membership functions on fuzzy logic controller performance", Int. Journal of Emerging Engg. Research and Tech., 3(3), pp. 76{83 (2015). 13. Asim, N., Sopian, K., Ahmadi, S., et al. A review on the role of materials science in solar cells", Renewable Sustainable Energy Rev., 16(8), pp. 5834{5847 (2012). 14. Esram, T., Kimball, J.W., Krein, P.T., et al. Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control", IEEE Trans. Power Electron., 21(5), pp. 1281{1291 (2006). 15. Balasankar, R., Arasu, G.T., and Christy Mano Raj, J.S. A global MPPT technique invoking partitioned estimation and strategic deployment of P&O to tackle partial shading conditions" , Sol. Energy, 143, pp. 73{ 85 (2017). 16. Kharb, R.K., Shimi, S.L., Chatterji, S., et al. Modeling of solar PV module and maximum power point tracking using ANFIS", Renew. Sustain. Energy Rev., 33, pp. 602{612 (2014). 17. Sahoo, S.K. Solar photovoltaic energy progress in India: a review", Renew. Sustain. Energy Rev., 59, pp. 927{939 (2016). 18. Ishaque, K., Salam, Z., and Syafaruddin A comprehensive MATLAB simulink PV system simulator with 3174 P. Verma et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3162{3174 partial, shading capability based on two-diode model", Sol. Energy, 85(9), pp. 2217{2227 (2011). 19. Karami, N., Moubayed, N., and Outbi, R. General review and classi_cation of di_erent MPPT techniques", Renew. Sustain. Energy Rev., 68(1), pp. 1{18 (2017). 20. Li, G., Jin, Y., Akram, M.W., et al. Application of bio-insopired algorithms in maximum power point tracking for PV system under partial shading conditions", A review. Renewable and Sustainable Energy, 81(1), pp. 840{873 (2018). 21. Singh, N. A modi_ed variant of grey wolf optimizer", Int. Journal of Science & Tech., 27(3), pp. 1450{1466 (2018). DOI: 10.24200/SCI.2018.50122.1523 22. Vaez, S.R.H. and Minaei, Z. Pulse extraction of pulse like ground motions based on particle swarm optimization algorithm", Int. Journal of Science & Tech., 27(1), pp. 134{158 (2018). DOI: 10.24200/SCI.2018.5607.1374 23. Ram, J.P., Babu, T.S., and Rajasekar, N. A comprehensive review on solar PV maximum power point tracking techniques", Renew. Sustain. Energy Rev., 67, pp. 826{847 (2017). 24. Kumar, P. and Mahajan, A. Soft computing techniques for the control of an active power _lter", IEEE Trans. Power Deliv., 24(1), pp. 452{461 (2009). 25. Sundareswarm, K., Sankar, P., Nayak, P.S.R., et al. Enhanced energy output from a PV system under partial shaded conditions through arti_cial bee colony", IEEE Trans. Sustain. Energy, 6(1), pp. 198{ 209 (2015). 26. Verma, P., Mahajan, P., and Garg, R. Comparison of intelligent and conventional MPPT algorithms for photoVoltaic system under partially shaded conditions", IEEE International Conference, RDCAPE- 2017, India, pp. 505{510 (2017). 27. Gow, J.A. Development of a model for photovoltaic arrays suitable for use in simulation studies of solar energy conversion systems", 6th Int. Conf. Power Electron. Variable Speed Drives, Nottingham, UK, pp. 69{74 (1996). 28. Al-Gizi, A., Al-Chlaihawi, S., Louzazni, M., et al. Genetically optimization of an asymmetrical fuzzy logic based photovoltaic maximum power point tracking controller", Advances in Elec. and Computer Engg., 17(4), pp. 69{76 (2017). 29. Liu, C.L., Chen, J.H, Liu, Y.H., et al. An asymmetrical fuzzy-logic-control-based MPPT algorithm for photovoltaic systems", Energies, 7, pp. 2177{2193 (2014). 30. Kuo, T.J. and Chen, J.F. Novel maximum-powerpoint tracking controller for photovoltaic energy conversion system", IEEE Trans. Ind. Electron., 48(3), pp. 594{601 (2001). 31. Casadei, D. Single-phase single-stage photovoltaic generation system based on a ripple correlation control maximum power point tracking", IEEE Trans. Energy Convers., 21(2), pp. 562|568 (2006). 32. Gupta, N. and Garg, R. Tuning of asymmetrical fuzzy logic control algorithm for SPV system connected to grid", International Journal of Hydrogen Energy, 42(26), pp. 16375{16385 (2017). 33. El-Dein, M.S., Kazerani, M., and Salama, M.M.A. Optimal photovoltaic array recon_guration to reduce partial shading losses", IEEE Trans. Sustain. Energy, 4(1), pp. 145{153 (2013).