References:
1. Al-Mujaini, A., Wali, U., and Alkhabori, M. "Functional endoscopic sinus surgery: indications and complications in the ophthalmic field", Oman Medical Journal, 24(2), pp. 70-80 (2009).
2. Wurm, J., Dannenmann, T., Bohr, C., Iro, H., and Bumm, K. "Increased safety in robotic paranasal sinus and skull base surgery with redundant navigation and automated registration", The International Journal of Medical Robotics and Computer Assisted Surgery, 1(3), pp. 42-48 (2005).
3. Varshney, R., Frenkiel, S., Nguyen, L.H., Young, M., Del Maestro, R., Zeitouni, A., Saad, E., Funnell, W.R.J., and Tewfik, M.A. "The McGill simulator for endoscopic sinus surgery (MSESS): a validation study", Journal of Otolaryngology-Head & Neck Surgery, 43(1), p. 40 (2014).
4. Delgado-Vargas, B., Romero-Salazar, A.L., Burneo, P.M.R., Hincapie, C.V., de los Santos Granado, G., del Castillo Lopez, R., Arnau, C.F., and Marco, I.C. "Evaluation of resident's training for endoscopic sinus surgery using a sheep's head", European Archives of Oto-Rhino-Laryngology, 273(8), pp. 2085-2089 (2016).
5. Kuhnapfel, U., Cakmak, H.K., and Maa, H. "Endoscopic surgery training using virtual reality and deformable tissue simulation", Computers & Graphics, 24(5), pp. 671-682 (2000).
6. Parikh, S.S., Chan, S., Agrawal, S.K., Hwang, P.H., Salisbury, C.M., Rafii, B.Y., Varma, G., Salisbury, K.J., and Blevins, N.H. "Integration of patient-specific paranasal sinus computed tomographic data into a virtual surgical environment", American Journal of Rhinology & Allergy, 23(4), pp. 442-447 (2009).
7. Acar, B., Gunbey, E., Babademez, M.A., Karabulut, H., Gunbey, H.P., and Karasen, R.M. "Utilization and dissection for endoscopic sinus surgery training in the residency program", Journal of Craniofacial Surgery, 21(6), pp. 1715-1718 (2010).
8. Delorme, S., Laroche, D., DiRaddo, R., and Del Maestro, R.F. "NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training", Operative Neurosurgery, 71(1 Suppl Operative), pp. 32- 42 (2012).
9. Zhao, Y.C., Kennedy, G., Yukawa, K., Pyman, B., and O'Leary, S. "Can virtual reality simulator be used as a training aid to improve cadaver temporal bone dissection? Results of a randomized blinded control trial", The Laryngoscope, 121(4), pp. 831-837 (2011).
10. Kolbari, H., Sadeghnejad, S., Bahrami, M., and Ali, K.E. "Adaptive control of a robot-assisted tele-surgery in interaction with hybrid tissues", Journal of Dynamic Systems, Measurement, and Control, 140(12), p. 121012 (2018).
11. Wiet, G.J., Stredney, D., and Wan, D. "Training and simulation in otolaryngology", Otolaryngologic Clinics of North America, 44(6), pp. 1333-1350 (2011).
12. Kolbari, H., Sadeghnejad, S., Bahrami, M., and Kamali, A. "Bilateral adaptive control of a teleoperation system based on the hunt-crossley dynamic model", In: Robotics and Mechatronics (ICROM), 3rd RSI International Conference on 2015, pp. 651-656, IEEE (2015).
13. Kolbari, H., Sadeghnejad, S., Bahrami, M., and Kamali, E.A. "Nonlinear adaptive control for teleoperation systems transitioning between soft and hard tissues", In: Robotics and Mechatronics (ICROM), 2015 3rd RSI International Conference on, pp. 055- 060, IEEE (2015).
14. Piromchai, P. "Virtual reality surgical training in ear, nose and throat surgery", International Journal of Clinical Medicine, 5, pp. 558-566 (2014).
15. Rosseau, G., Bailes, J., del Maestro, R., Cabral, A., Choudhury, N., Comas, O., Debergue, P., De Luca, G., Hovdebo, J., and Jiang, D. "The development of a virtual simulator for training neurosurgeons to perform and perfect endoscopic endonasal transsphenoidal surgery" Neurosurgery, 73, pp. S85-S93 (2013).
16. Samur, E., Sedef, M., Basdogan, C., Avtan, L., and Duzgun, O. "A robotic indenter for minimally invasive measurement and characterization of soft tissue response", Medical Image Analysis, 11(4), pp. 361-373 (2007).
17. Sadeghnejad, S., Esfandiari, M., Farahmand, F., and Vossoughi, G. "Phenomenological contact model characterization and haptic simulation of an endoscopic sinus and skull base surgery virtual system", In Robotics and Mechatronics (ICROM), 4th International Conference on, pp. 84-89, IEEE (2016).
18. Ebrahimi, A., Sadeghnejad, S., Vossoughi, G., Moradi, H., and Farahmand, F. "Nonlinear adaptive impedance control of virtual tool-tissue interaction for use in endoscopic sinus surgery simulation system", In: Robotics and Mechatronics (ICROM), 4th International Conference on 2016, pp. 66-71, IEEE (2016).
19. Fu, Y. and Chui, C. "Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data", Journal of Biomechanics, 47(10), pp. 2430-2435 (2014).
20. Cheng, L. and Hannaford, B. "Evaluation of liver tissue damage and grasp stability using finite element analysis", Computer Methods in Biomechanics and Biomedical Engineering, 19(1), pp. 31-40 (2016).
21. Dehghani Ashkezari, H., Mirbagheri, A., Behzadipour, S., and Farahmand, F. "A mass-spring-damper model for real time simulation of the frictional grasping interactions between surgical tools and large organs", Scientia Iranica, 22(5), pp. 1833-1841 (2015).
22. Zeng, Y., Yager, D., and Fung, Y. "Measurement of the mechanical properties of the human lung tissue", Journal of Biomechanical Engineering, 109(2), pp. 169-174 (1987).
23. Al-Mayah, A., Moseley, J., and Brock, K. "Contact surface and material nonlinearity modeling of human lungs", Physics in Medicine & Biology, 53, p. 305 (2007).
24. Saghaei Nooshabadi, Z., Abdi, E., Farahmand, F., Narimani, R., and Chizari, M. "A meshless method to simulate the interactions between a large soft tissue and a surgical grasper", Scientia Iranica, 23(1), pp. 295-300 (2016).
25. Mehrabian, H., Campbell, G., and Samani, A. "A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment", Physics in Medicine and Biology, 55(24), p. 7489 (2010).
26. Naini, A.S., Patel, R.V., and Samani, A. "Measurement of lung hyperelastic properties using inverse finite element approach. Biomedical Engineering", IEEE Transactions on, 58(10), pp. 2852-2859 (2011).
27. Cheng, L. and Hannaford, B. "Finite element analysis for evaluating liver tissue damage due to mechanical compression", Journal of Biomechanics, 48(6), pp. 948-955 (2015).
28. Kobayashi, Y., Kato, A., Watanabe, H., Hoshi, T., Kawamura, K., and Fujie, M.G. "Modeling of viscoelastic and nonlinear material properties of liver tissue using fractional calculations", Journal of Biomechanical Science and Engineering, 7(2) pp. 177-187 (2012).
29. Fallah, A., Ahmadian, M.T., and Aghdam, M.M. "Rate-dependent behavior of connective tissue through a micromechanics-based hyper viscoelastic model", International Journal of Engineering Science, 121, pp. 91-107 (2017).
30. Panda, S.K. and Buist, M.L. "A finite nonlinear hyperviscoelastic model for soft biological tissues", Journal of Biomechanics, 69, pp. 121-128 (2018).
31. Karimi, A., Navidbakhsh, M., Haghi, A.M., and Faghihi, S. "Measurement of the uniaxial mechanical properties of rat brains infected by plasmodium berghei ANKA", Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 227(5), pp. 609-614 (2013).
32. Karimi, A., Navidbakhsh, M., Yousefi, H., Haghi, A.M., and Sadati, S.A. "Experimental and numerical study on the mechanical behavior of rat brain tissue", Perfusion, 29(4), pp. 307-314 (2014).
33. Rashid, B., Destrade, M., and Gilchrist, M.D. "Mechanical characterization of brain tissue in simple shear at dynamic strain rates", Journal of the Mechanical Behavior of Biomedical Materials, 28, pp. 71-85 (2013).
34. Trevillot, V., Sobral, R., Dombre, E., Poignet, P., Herman, B., and Crampette, L. "Innovative endoscopic sino-nasal and anterior skull base robotics", International Journal of Computer Assisted Radiology and Surgery, 8(6), pp. 977-987 (2013).
35. Martin, C., Pham, T., and Sun, W. "Significant differences in the material properties between aged human and porcine aortic tissues", European Journal of Cardio-Thoracic Surgery, 40(1), pp. 28-34 (2011).
36. Rivlin, R.S. and Saunders, D. "Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber", Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 243(865), pp. 251- 288 (1951).
37. Kaster, T., Sack, I., and Samani, A. "Measurement of the hyperelastic properties of ex vivo brain tissue slices", Journal of Biomechanics, 44(6), pp. 1158-1163 (2011).
38. Yeoh, O. "Characterization of elastic properties of carbon-black-filled rubber vulcanizates", Rubber Chemistry and Technology, 63(5), pp. 792-805 (1990).
39. Mehrabian, H. and Samani, A. "An iterative hyperelastic parameters reconstruction for breast cancer assessment" In: Medical Imaging, 6916, 69161C. International Society for Optics and Photonics (2008).
40. Mooney, M. "A theory of large elastic deformation", Journal of Applied Physics, 11(9) pp. 582-592 (1940).
41. Ogden, R.W., Non-linear Elastic Deformations, Courier Corporation (1997).
42. Manual, A.U., Version 6.14-1, Dassault Systemes Simulia Corp., Providence, RI.
43. Schittkowski, K. "NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems", Annals of Operations Research, 5(2), pp. 485-500 (1986).
44. Guide, M.U.s., The mathworks, Inc., Natick, MA 5 p. 333 (1998).
45. Hadamard, J., Lectures on Cauchy's Problem in Linear Partial Differential Equations, Courier Corporation, (2014).