In this paper, we propose a structure for graphene spaser and develop an electrostatic model for quantizing plasmonic modes. Using this model, one can analyze any spaser consisting of graphene in the electrostatic regime. The proposed structure is investigated analytically and the spasing condition is derived. We show that spasing can occur in some frequencies where the Quality factor of plasmonic modes is higher than some special minimum value. Finally, an algorithmic design procedure is proposed, by which one can design the structure for a given frequency. As an example, a spaser with plasmon energy of 0.1 eV is designed.
Bergman, D.J. and Stockman, M.I. Surface plasmon ampli_cation by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems", Physical Review Letters, 90(2), p. 027402 (2003).
Noginov, M., Zhu, G., Belgrave, A., Bakker, R., Shalaev, V., Narimanov, E., Stout, S., Herz, E., Suteewong, T., and Wiesner, U. Demonstration of a spaser-based nanolaser", Nature, 460(7259), pp. 1110{ 1112 (2009).
Stockman, M.I. The spaser as a nanoscale quantum generator and ultrafast amplifier", Journal of Optics, 12(2), p. 024004 (2010).
Zhong, X.L. and Li, Z.Y. All-analytical semiclassical theory of spaser performance in a plasmonic nanocavity", Physical Review B, 88(8), p. 085101 (2013).
Dorfman, K.E., Jha, P.K., Voronine, D.V., Genevet, P., Capasso, F., and Scully, M.O. Quantumcoherence- enhanced surface plasmon ampli_cation by stimulated emission of radiation", Physical Review Letters, 111(4), p. 043601 (2013).
. Apalkov, V. and Stockman, M.I. Proposed graphene nanospaser", Light: Science & Applications, 3(7), p. e191 (2014). 7. Andrianov, E., Pukhov, A., Dorofeenko, A., Vinogradov, A., and Lisyansky, A. Forced synchronization of spaser by an external optical wave", Optics Express, 19(25), pp. 24849{24857 (2011). 8. Khurgin, J.B. and Sun, G. Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence", Optics Express, 20(14), pp. 15309{15325 (2012). 9. Li, D. and Stockman, M.I. Electric spaser in the extreme quantum limit", Physical Review Letters, 110(10), p. 106803 (2013). 10. Parfenyev, V.M. and Vergeles, S.S. Quantum theory of a spaser-based nanolaser", Optics Express, 22(11), pp. 13671{13679 (2014). 11. Rupasinghe, C., Rukhlenko, I.D., and Premaratne, M. Spaser made of graphene and carbon nanotubes", ACS Nano, 8(3), pp. 2431{2438 (2014). 12. Jayasekara, C., Premaratne, M., Stockman, M.I., and Gunapala, S.D. Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser", Journal of Applied Physics, 118(17), p. 173101 (2015). 13. Totero Gongora, J.S., Miroshnichenko, A.E., Kivshar, Y.S., and Fratalocchi, A. Energy equipartition and unidirectional emission in a spaser nanolaser", Laser & Photonics Reviews, 10(3), pp. 432{440 (2016). 14. Richter, M., Gegg, M., Theuerholz, T.S., and Knorr, A. Numerically exact solution of the many emittercavity laser problem: Application to the fully quantized spaser emission", Physical Review B, 91(3), p. 035306 (2015). 15. Meng, X., Liu, J., Kildishev, A.V., and Shalaev, V.M. Highly directional spaser array for the red wavelength region", Laser & Photonics Reviews, 8(6), pp. 896{903 (2014). 16. Liu, B., Zhu, W., Gunapala, S.D., Stockman, M.I., and Premaratne, M. Open resonator electric spaser", ACS Nano, 11(12), pp. 12573{12582 (2017). 17. Kumarapperuma, L., Premaratne, M., Jha, P.K., Stockman, M.I., and Agrawal, G.P. Complete characterization of the spasing (ll) curve of a three-level quantum coherence enhanced spaser for design optimization", Applied Physics Letters, 112(20), p. 201108 (2018). 18. Veltri, A., Chipouline, A., and Aradian, A. Multipolar, timedynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium", Scienti_c Reports, 6, p. 33018 (2016). 19. Andrianov, E., Pukhov, A., Dorofeenko, A., Vinogradov, A., and Lisyansky, A. Spaser operation below threshold: autonomous vs. driven spasers", Optics Express, 23(17), pp. 21983{21993 (2015). 20. Ye, Y., Liu, F., Cui, K., Feng, X., Zhang, W., and Huang, Y. Free electrons excited spaser", Optics Express, 26(24), pp. 31402{31412 (2018). 21. Shahbazyan, T.V. Mode volume, energy transfer, and spaser threshold in plasmonic systems with gain", ACS Photonics, 4(4), pp. 1003{1008 (2017). 22. Passarelli, N., Bustos-Maru_un, R.A., and Coronado, E.A. Spaser and optical ampli_cation conditions in gold-coated active nanoparticles", The Journal of Physical Chemistry C, 120(43), pp. 24941{24949 (2016). 23. Jayasekara, C., Premaratne, M., Gunapala, S.D., and Stockman, M.I. Mos2 spaser", Journal of Applied Physics, 119(13), p. 133101 (2016). 24. Gegg, M., Theuerholz, T.S., Knorr, A., and Richter, M. Fully quantized spaser physics: towards exact modeling of mesoscopic CQED systems", In Ultrafast Phenomena and Nanophotonics XIX, 9361, p. 93610Y. International Society for Optics and Photonics (2015). 25. Petrosyan, L. and Shahbazyan, T. Spaser quenching by o_resonant plasmon modes", Physical Review B, 96(7), p. 075423 (2017). 3094 S. Behjati Ardakani and R. Faez/Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3084{3095 26. Warnakula, T., Stockman, M.I., and Premaratne, M. Improved scheme for modeling a spaser made of identical gain elements", JOSA B, 35(6), pp. 1397{ 1407 (2018). 27. Zheng, C., Jia, T., Zhao, H., Zhang, S., Feng, D., and Sun, Z. Low threshold tunable spaser based on multipolar fano resonances in disk-ring plasmonic nanostructures", Journal of Physics D: Applied Physics, 49(1), p. 015101 (2015). 28. Wan, M., Gu, P., Liu, W., Chen, Z., and Wang, Z. Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities", Applied Physics Letters, 110(3), p. 031103 (2017). 29. Song, P., Wang, J.H., Zhang, M., Yang, F., Lu, H.J., Kang, B., Xu, J.J., and Chen, H.Y. Three-level spaser for next-generation luminescent nanoprobe", Science Advances, 4(8), p. eaat0292 (2018). 30. Ardakani, S.B. and Faez, R. Doped silicon quantum dots as sources of coherent surface plasmons", Journal of Optics, 20(12), p. 125001 (2018). URL http://stacks.iop.org/2040-8986/20/i=12/a=125001 31. Ardakani, S.B. and Faez, R., A Tunable Spherical Graphene Spaser, arXiv preprint arXiv:1712.01322 (2017). 32. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S. and Firsov, A. Two-dimensional gas of massless dirac fermions in graphene", Nature, 438(7065), pp. 197{200 (2005). 33. Majdi, M. and Fathi, D. Graphene-based nano biosensor: Sensitivity improvement", Scientia Iranica, 24(6), pp. 3531{3535 (2017). 34. Faramarzi, V., Ahmadi, V., Ghane Golmohamadi, F., and Fotouhi, B. A biosensor based on plasmonic wave excitation with di_ractive grating structure", Scientia Iranica, 24(6), pp. 3441{3447 (2017). 35. Derakhshi, M. and Fathi, D. Terahertz plasmonic switch based on periodic array of graphene/silicon", Scientia Iranica, 24(6), pp. 3452{3457 (2017). 36. Jablan, M., Buljan, H., and Solja_ci_c, M. Plasmonics in graphene at infrared frequencies", Physical Review B, 80(24), p. 245435 (2009). 37. Chuang, S., Physics of Photonic Devices, Wiley Series in Pure and Applied Optics, John Wiley & Sons (2009). URL https://books.google.com/books?id=x5Cd PDf1kC. 38. Vurgaftman, I., Meyer, J., and Ram-Mohan, L. Band parameters for iii{v compound semiconductors and their alloys", Journal of Applied Physics, 89(11), pp. 5815{5875 (2001). 39. Elias, D., Gorbachev, R., Mayorov, A., Morozov, S., Zhukov, A., Blake, P., Ponomarenko, L., Grigorieva, I., Novoselov, K., Guinea, F., et al. Dirac cones reshaped by interaction e_ects in suspended graphene", Nature Physics, 7(9), p. 701 (2011). 40. Christensen, T., From Classical to Quantum Plasmonics in Three and Two Dimensions, Springer (2017). 41. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, 55, Courier Corporation (1964). 42. Longe, P. and Bose, S. Collective excitations in metallic graphene tubules", Physical Review B, 48(24), p. 18239 (1993). 43. Arista, N.R. and Fuentes, M.A. Interaction of charged particles with surface plasmons in cylindrical channels in solids", Physical Review B, 63(16), p. 165401 (2001). 44. Ashcroft, N. and Mermin, N., Solid State Physics, HRW International Editions, Holt, Rinehart and Winston (1976). URL https://books.google.com/books? id=1C9HAQAAIAAJ. 45. Scully, M. and Zubairy, M., Quantum Optics, Cambridge University Press (1997). URL https://books.google.com/books?id=9lkgAwAAQBAJ. 46. Hassani, S., Mathematical Physics: A Modern Introduction to Its Foundations, Springer International Publishing (2013), URL https://books.google. com/books?id=uRa4BAAAQBAJ. 47. Mikhailov, S. and Ziegler, K. New electromagnetic mode in graphene", Physical Review Letters, 99(1), p. 016803 (2007). 48. Gao, Y., Ren, G., Zhu, B., Liu, H., Lian, Y., and Jian, S. Analytical model for plasmon modes in graphenecoated nanowire", Optics Express, 22(20), pp. 24322{ 24331 (2014). 49. Jalali-Mola, Z. and Jafari, S. Electromagnetic modes from stoner enhancement: Graphene as a case study", Journal of Magnetism and Magnetic Materials, 471, pp. 220{235 (2019).