Numerical study of insulation structure characteristics and arrangement effects on cell trapping using alternative current insulating based dielectrophoresis

Document Type : Article

Authors

1 Small Medical Devices, BioMEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Postal Code 14399-55961, Iran

2 a. Small Medical Devices, BioMEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Postal Code 14399-55961, Iran b. Department of Mechanical Engineering, College of Engineering, Michigan State University, MI, USA

Abstract

Insulator-based dielectrophoresis is a recently developed technique in which insulating posts are used to produce non-uniformity in the electric field in a microchannel. This study presents the effects of insulating posts geometry and arrangement on the trapping efficiency of red blood cells in an alternating current- Insulator-based dielectrophoresis system. Microchannels containing square, circular and diamond-shaped posts with particles under the influence of positive dielectrophoresis force and fluid flow were considered. Finite element method was used to compute the velocity of the flow and electric field. The numerical method was verified by comparing the numerical results with experimental data. Two distinct criteria for examining particle trapping for distinct shapes and arrangements of insulating posts were introduced. Particle tracing simulation was implemented to observe particle trapping and compare the trapping performance of systems with distinct posts. As shown in the results for the system with circular and square posts, insulators should be narrowed to improve particle trapping, while diamond post should be widened to increase the trapping efficiency. In addition, the particle tracing results showed that microchannel with square posts is more efficient in particle trapping.

Keywords

Main Subjects


References:
1. C etin, B. and Li, D. "Dielectrophoresis in micro fluidics technology", Electrophoresis, 32(18), pp. 2410-2427 (2011).
2. Gagnon, Z., Senapati, S., Gordon, J., et al. "Dielectrophoretic detection and quantification of hybridized DNA molecules on nano-genetic particles", Electrophoresis, 29(24), pp. 4808-4812 (2008).
3. Pethig, R. "Dielectrophoresis: Status of the theory, technology, applications", Biomicrofluidics, 4(2), pp. 510-713 (2010).
4. Whitesides, G. "The origins and the future of microfluidics", Nature, 4427101July, pp. 0028-0836 (2006).
5. Clark, I.C., Thakur, R., and Abate, A.R. "Concentric electrodes improve microfluidic droplet sorting", Lab on a Chip, 18(5), pp. 710-713 (2018).
6. Xuan, X., and Qian, S., Micro/Nano-Chip Electrokinetics, MDPI (2018).
7. Waheed, W., Alazzam, A., Mathew, B., et al. "Lateral fluid  flow fractionation using dielectrophoresis (LFFFDEP) for size-independent, label-free isolation of circulating tumor cells", Journal of Chromatography B, 1087, pp. 133-137 (2018).
8. Flanagan, L.A., Lu, J., Wang, L., et al. "Unique dielectric properties distinguish stem cells and their differentiated progeny", Stem Cells, 26(3), pp. 656- 665 (2008).
9. Gagnon, Z.R. "Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells", Electrophoresis, 32(18), pp. 2466- 2487 (2011).
10. Jones, T.B. and Jones, T.B., Electromechanics of Particles, Cambridge University Press (2005).
11. Choi, S., Ko, K., Lim, J., et al. "Non-linear cellular dielectrophoretic behavior characterization using dielectrophoretic tweezers-based force spectroscopy inside a microfluidic device", Sensors, 18(10), p. 3543 (2018).
12. Chen, X., Liang, Z., Li, D., et al. "Microfluidic dielectrophoresis device for trapping, counting and detecting Shewanella oneidensis at the cell level", Biosensors and Bioelectronics, 99, pp. 416-423 (2018).
13. Sato, N., Yao, J., Sugawara, M., et al. "Numerical study of particle-fluid  flow under AC electrokinetics in electrode-multilayered microfluidic device", IEEE Transactions on Biomedical Engineering, 66(2), pp. 453-463 (2018).
14. Zhang, J., Yuan, D., Zhao, Q., et al. "Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device", Sensors and Actuators B: Chemical, 267, pp. 14-25 (2018).
15. Moncada-Hernandez, H. and Lapizco-Encinas, B.H. "Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach", Anal. Bioanal. Chem., 396(5), pp. 1805-1816 (2010).
16. Alazzam, A., Mathew, B., and Alhammadi, F. "Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis", J. Sep. Sci., 40(5), pp. 1193-1200 (2017).
17. Cummings, E.B. and Singh, A.K. "Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results", Anal. Chem., 75(18), pp. 4724-4731 (2003).
18. Lapizco-Encinas, B.H., Simmons, B.A., Cummings, E.B., et al. "Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water", Electrophoresis, 25(10-11), pp. 1695-1704 (2004).
19. Aghaamoo, M., Aghilinejad, A., and Chen, X. "Numerical study of insulator-based dielectrophoresis method for circulating tumor cell separation, Micro fluidics, BioMEMS, and Medical Microsystems XV, 10061, International Society for Optics and Photonics (2017).
20. Regtmeier, J., Kasewieter, J., Everwand, M., et al. "Continuous-flow separation nanoparticles by electrostatic sieving at micro-nano fluidic interface", J. Sep. Sci., 34(10), pp. 1180-1183 (2011).
21. Zellner, P., Shake, T., Sahari, A., et al. "Off-chip passivated-electrode, insulator-based dielectrophoresis (O-DEP)", Anal. Bioanal. Chem., 405(21), pp. 6657-6666 (2013).
22. Gallo-Villanueva, R.C., Perez-Gonzalez, V.H., Davalos, R.V., et al. "Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis", Electrophoresis, 32(18), pp. 2456- 2465 (2011).
23. Moncada-Hernandez, H., Baylon-Cardiel, J.L., Perez-Gonzalez, V.H., et al. "Insulator-based dielectrophoresis of microorganisms: Theoretical and experimental results", Electrophoresis, 32(18), pp. 2502-2511 (2011).
24. Kwon, J.-S., Maeng, J.-S., Chun, M.-S., et al. "Improvement of microchannel geometry subject to electrokinesis and dielectrophoresis numerical simulations", Microfluid. Nanofluid., 5(1), pp. 23-31 (2008).
25. Saucedo-Espinosa, M.A., and Lapizco-Encinas, B.H. "Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape", Electrophoresis, 36(9-10), pp. 1086-1097 (2015).
26. Pesch, G.R., Kiewidt, L., Du, F., et al. "Electrodeless dielectrophoresis: Impact of geometry and material on obstacle polarization", Electrophoresis, 37(2), pp. 291-301 (2016).
27. LaLonde, A., Gencoglu, A., Romero-Creel, M.F., et al. "Effect of insulating posts geometry on particle manipulation in insulator based dielectrophoretic devices", J. Chromatogr. A, 1344, pp. 99-108 (2014).
28. Mohammadi, M., Zare, M.J., Madadi, H., et al. "A new approach to design an efficient micropost array for enhanced direct-current insulator-based dielectrophoretic trapping", Anal. Bioanal. Chem., 408(19), pp. 5285-5294 (2016).
29. Shafiee, H., Sano, M.B., Henslee, E.A., et al. "Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP)", Lab Chip, 10(4), pp. 438-445 (2010).
30. Salmanzadeh, A., Romero, L., Shafiee, H., et al. "Isolatio of prostate tumor initiating cells through their dielectrophoretic signature", Lab Chip, 12(1), pp. 182-189 (2012).
31. Zellner, P., Shake, T., Hosseini, Y., et al. "3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping", Electrophoresis, 36(2), pp. 277-283 (2015).
32. Cristofanilli, M., Krishnamurthy, S., Das, C.M., et al. "Dielectric cell separation of fine needle aspirates from tumor xenografts", J. Sep. Sci., 31(21), pp. 3732-3739 (2008).
33. Sano, M.B., Gallo-Villanueva, R.C., Lapizco-Encinas, B.H., et al. "Simultaneous electro kinetic  flow and dielectrophoretic trapping using perpendicular static and dynamic electric fields", Micro fluid. Nanofluid., 15(5), pp. 599-609 (2013).
34. Martinez-Duarte, R., Camacho-Alanis, F., Renaud, P., et al. "Dielectrophoresis of lambda-DNA using 3D carbon electrodes", Electrophoresis, 34(7), pp. 1113- 1122 (2013).
35. Demierre, N., Braschler, T., Muller, R., et al. "Focusing and continuous separation cells in micro fluidic device using lateral dielectrophoresis", Sensors and Actuators B: Chemical, 132(2), pp. 388-396 (2008).
36. Shamloo, A. and Kamali, A. "Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types", Journal of Separation Science, 40(20), pp. 4067-4075 (2017).
37. Saucedo-Espinosa, M.A., LaLonde, A., Gencoglu, A., et al. "Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts", Electrophoresis, 37(2), pp. 282-290 (2016).
38. Demierre, N., Braschler, T., Linderholm, P., et al. "Characterization and optimization of liquid electrodes for lateral dielectrophoresis", Lab Chip, 7(3), pp. 355-365 (2007).
39. C etin, B.,  Oner, S.D., and Baranoglu, B. "Modeling of dielectrophoretic particle motion: Point particle versus finite-sized particle", Electrophoresis, 38(11), pp. 1407-1418 (2017).
40. Mathew, B., Alazzam, A., Abutayeh, M., et al. "Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation", J. Sep. Sci., 39(15), pp. 3028-3036 (2016).
Volume 27, Issue 3
Transactions on Mechanical Engineering (B)
May and June 2020
Pages 1302-1312
  • Receive Date: 15 March 2018
  • Accept Date: 26 January 2019