Optimal tuner selection using Kalman filter for a real-time modular gas turbine model

Document Type : Research Note

Authors

Department of Mechanical Engineering, Sharif University of Technology (SUT), Tehran, P.O. Box 11155-9567, Iran

Abstract

In this study, a real-time flexible modular modeling approach for the simulation of gas turbine engines dynamic behavior based on nonlinear thermodynamic and dynamic laws is addressed. The introduced model, which is developed in Matlab-Simulink environment, is an object-oriented high speed real-time computer model and is capable of simulating the dynamic behavior of a broad group of gas turbine engines due to its modular structure. Moreover, a Kalman filter-based model tuning procedure is applied to decrease the modeling errors. Modeling errors are defined as the mismatch between simulation results and available experimental data. This tuning procedure is an underdetermined estimation problem, where there are more tuning parameters than available measured data. Here, an innovative approach to produce a tuning parameter vector is introduced. This approach is based on seeking an optimal initial value for the Kalman filter tuning procedure. Three simulation studies are carried out in this paper to demonstrate the advantages, capabilities and performance of the proposed scheme. Furthermore, simulation results are compared with manufacturer’s published data, and with the experimental results gathered in either turbo-generator or turbo-compressor applications. Computational time requirement of the model is discussed at the end of the paper.

Keywords

Main Subjects


  1. References:

    1. Cohen, H., Rogers, G.F.C., and Saravanamuttoo, H.I.H., Gas Turbine Theory, 4th Edn., AddisonWesley Longman, Harlow, UK (1996).
    2. Evans, C., Rees, D., and Borrell, A. Identi_cation of aircraft gas turbine dynamics using frequency-domain techniques", J. Control Eng. Practice, 8(4), pp. 457{ 467 (2000).
    3. Asgari, H., Venturini, M., Chen, X., et al. Modeling and simulation of the transient behavior of an industrial power plant gas turbine", ASME J. Eng. Gas Turbines Power, 136(6), pp. 061601{10 (2014).
    4. Hosseini, S.M., Fatehi, A., Khaki Sedigh, A., et al. Automatic model bank selection in multiple model identi_cation of gas turbine dynamics", J. Syst. Control Eng., 227(5), pp. 482{494 (2013).
    5. Asgari, H., Venturini, M., Chen, X., et al. Modeling and simulation of the transient behavior of an industrial power plant gas turbine", ASME J. Eng. Gas Turbines Power, 136(6), p. 061601 (2014).
    6. Asgari, H., Chen, X., Morini, M., et al. NARX models for simulation of the start-up operation of a singleshaft gas turbine", Applied Thermal Engineering, 93, pp. 368{376 (2016).
    7. Benyounes, A., Hafaifa, A., Kouzou, A., et al. Gas turbine modeling using adaptive fuzzy neural network approach based on measured data classi_cation", Mathematics-in-Industry Case Studies, 7(1), pp. 4{18 (2017).
    8. Mohammadi, E. and Montazeri-Gh, M. A new approach to the gray-box identi_cation of wiener models with the application of gas turbine engine modeling", ASME J. Eng. Gas Turbines Power, 137(7), p. 071202 (2015). 9. Bahrami, S., Gha_ari, A., Sadati, S.H., et al. Identifying a simplified model for heavy duty gas turbine", J. Mech. Science Tech., 28(6), pp. 2399{2408 (2014). 10. Razak, A.M., Industrial Gas Turbines, Performance and Operability, Woodhead Publishing, London, UK (2007). 11. Cao, Y., Jin, X., Meng, G., et al. Computational modular model library of gas turbine", J. Adv. In Eng. Software, 36(2), pp. 127{134 (2005). 12. Schobeiri, T., Attia, M., and Lippke, C. GETRAN: A generic, modularly structured computer code for simulation of dynamic behavior of aero-and power generation gas turbine engines", ASME J. Eng. Gas Turbines Power, 116(3), pp. 483{494 (1994). 13. Panov, V. GasTurboLib: Simulink library for gas turbine engine modelling", In ASME Turbo Expo, Orlando, Florida USA, pp. 555{565 (2009). 14. Bianchi, M., Peretto, A., and Spina, P.R. Modular dynamic model of multi-shaft gas turbine and validation test", In Proc. Winter Annual Meeting of ASME, 38, AES, Anaheim, Calif, USA, pp. 73{81 (1998). 15. Chacartegui, R., Sanchez, D., Munoz, A., et al. Real time simulation of medium size gas turbines", J. Energy Conversion and Management, 52(1), pp. 713{ 724 (2011). 16. Camporeale, S.M., Fortunato, B., and Mastrovito, M. A modular code for real time dynamic simulation of gas turbines in Simulink", ASME J. Eng. Gas Turbines Power, 128(3), pp. 506{517 (2006). 17. Mohammadi, Z. and Salarieh, H. Parameter identi_- cation of a parametrically excited rate micro-gyroscope using recursive least squares method", Scientia Iranica, Transaction B, Mechanical Engineering, 24(4), pp. 1889{1900 (2017). 18. Kiani, M. and Pourtakdoust, S.H. Spacecraft attitude and system identi_cation via marginal modi_ed unscented Kalman _lter utilizing the sun and calibrated three-axis-magnetometer sensors", Scientia Iranica, Transaction B, Mechanical Engineering, 21(4), pp. 1451{1460 (2014). 19. Panov, V. Auto-tuning of real-time dynamic gas turbine models", In ASME Turbo Expo, Dusseldorf, Germany, p. V006T06A004 (2014). 20. Chaibakhsh, A. and Amirkhani, S. A simulation model for transient behavior of heavy-duty gas turbines", Applied Thermal Engineering, 132, pp. 115{ 127 (2018). 21. Simon, D., Optimal State Estimation, Kalman, H1, and Nonlinear Approaches, John Wiley & Sons, Inc., Hoboken, NJ (2006). 818 R. Sheikhbahaei et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 806{818 22. Litt, J.S. An optimal orthogonal decomposition method for Kalman _lter-based turbofan engine thrust estimation", ASME J. Eng. Gas Turbines Power, 130(1), 011601{1 (2008). 23. Simon, D.L. and Garg, S. Optimal tuner selection for Kalman _lter-based aircraft engine performance estimation", ASME J. Eng. Gas Turbines Power, 132(3), 031601{1 (2010). 24. Siemens, SGT-600 Industrial Gas Turbine, Siemens Industrial Turbomachinery, Inc., Duisburg, Germany (2005). 25. Strand, T., Industrial Gas Turbine Control, Siemens Power Generation, Siemens AG, Erlangen, Germany (2006). 26. Mackenzie, F.T., Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change, 3rd Ed., Prentice Hall, NY, USA (2003). 27. Patai S. and Rappoport, Z., The Chemistry of Alkanes and Cycloalkanes, Wiley & Sons, Chichester, UK (1992). 28. Kee, R.J., Rupley, F.M., and Miller, J.A., The Chemkin Thermodynamic Database, SAND87-8215B, UC-4, Sandia National Laboratories (1987). 29. Fielding, D. and Topps, J.E.C., Thermodynamic Data for the Calculation of Gas Turbine Performance, Aeronautical Research Council, R&M, No. 3099 (1959). 30. El-Masri, M.A. GASCAN-An interactive code for thermal analysis of gas turbine systems", ASME J. Eng. Gas Turbines Power, 110(2), pp. 201{209 (1988). 31. Tabari, A., Khaledi, H., and Hajilouy Benisi, A. Comparative evaluation of advanced gas turbine cycles with modi_ed blade cooling models", In ASME Turbo Expo, Barcelona, Spain, pp. 537{546 (2006). 32. Rowen, W. Simpli_ed mathematical representations of heavy duty gas turbines", ASME J. Eng. Gas Turbines Power, 105(4), pp. 865{869 (1983). 33. SGT-600 Industrial gas turbine (power generation) published data, accessed at 2018, July 22, Retrieved from http://www.energy.siemens.com/ru/pool/hq/ power-generation/ gas-turbines/SGT-600/downloads/ SGT-600 GT PowerGen EN.pdf 34. Rey OCGT Power Plant, accessed at 2018 July 22, Retrieved from http://globalenergyobservatory. org/geoid/45024 35. Neyzar Natural Gas Compressor Station, accessed at 2018 July 22, Retrieved from http://tcproject. nigc.ir/Portal/Home/ShowPage.aspx?Object=NEWS &CategoryID=21d_668-6bec-4fd1-8430-81a194b7d9e2 &WebPartID=893aaf0b-0d62-4c3b-82bf-55098c09e804 &ID=47a415c7-908a-4297-ba13-cb8c7ca9ca8c