Numerical modeling of a new reinforced masonry system subjected to in-plane cyclic loading

Document Type : Research Note

Authors

Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

This paper describes the behavior of walls under in-plane cyclic shear compression loads of a new reinforced masonry system composed of horizontally and vertically reinforcement based on Iran's national building regulation in two groups. First, steel bars in grid-type are mounted in the cement core between solid clay bricks (Double-Wythe) and in the second group, common steel bars in grid-type are mounted in perforated bricks and trusses as horizontal reinforcement, using advanced numerical simulation (LS-DYNA). A nonlinear finite element discrete modeling according to stress-strain models have been used in order to represent previously modeled masonry walls. Masonry units include perforated bricks and solid clay bricks, the mortar and bonding interfaces have been shown as continuum elements. In order to validate micro-modeling strategy, the input data, based on a reinforced masonry wall was previously tested in the laboratory with a clear identification and justification. That being so, the major purpose of this paper is: (a) the results of specimens in terms of maximum strength, ductility, energy absorption and failure modes (b) influence of aspect ratio and reinforcement type and (c) the comparison of modeled walls with other reinforced systems.

Keywords

Main Subjects


Refrences:
1. Toma_zevi_e, M., Earthquake-Resistant Design of Masonry  Buildings, London: Imperial College Press  (1999).  
2. Corradi, M., Di Schino, A., Borri, A., and Ru_ni,  R. A review of the stainless steel for masonry  repair and reinforcement", Construction and Building  Materials, 181, pp. 335{346 (2018). DOI:  /10.1016/j.conbuildmat.2018.06.034  
3. Babatunde, S.A. Review of strengthening techniques  for masonry using _ber reinforced polymers", Journal  of Composite Structures, 161, pp. 246{255 (2016).  DOI: /10.1016/j.compstruct.2016.10.132  
4. Basili, M., Marcari, G., and Vestroni, F. Nonlinear  analysis of masonry panels strengthened with textile  reinforced mortar", Eng. Struct., 113, pp. 245{258  (2015). DOI: /10.1016/j.engstruct.2015.12.021  
5. Zhou, Q., Zhu, F., Yang, X., et al. Shear capacity  estimation of fully grouted reinforced concrete masonry  walls using neural network and adaptive neurofuzzy  inference system models", Construction and  Building Materials, 153, pp. 937{947 (2017). DOI:  /10.1016/j.conbuildmat.2017.07.171  
6. Basili, M. Numerical modeling of slender masonry  walls with FRP under cyclic loading", ASCE Journal,  176, pp. 125{138 (2015).  
7. Shermi, C. and Dubey, R.N. In-plane behaviour  of masonry panel strengthened with welded  wire mesh and mortar", Construction and  Building Materials, 178, pp. 195{203 (2018). DOI:  /10.1016/j.conbuildmat.2018.04.081  
8. Dehghani, M., Najafgholipour, M., Kamrava, A.,  and Khajepour, M. Application of ordinary _berreinforced  concrete layer for in-plane retro_tting of  unreinforced masonry walls: Test and Modeling",  Scientia Iranica, 26(3), PP. 1089{1103 (2019). DOI:  10.24200/sci.2018.20164  
9. Mohebbi, M. and Joghataie, A. Optimal TMDS  for improving the seismic performance of historical  building", Scientia Iranica, 23(1), pp. 79{90 (2016).  
10. Messali, F., Metelli, G., and Plizzari, G. Experimental  results on the retro_tting of hollow bricks masonry  walls with reinforced high performance mortar coatings",  Construction and Building Materials, 141, pp.  619{630 (2017).  
11. Minaie, E., Mota, M., Moon, F.L., and Hamid,  A.A. In-plane behavior of partially grouted reinforced  concrete masonry shear walls", J Struct. Eng., 71, pp.  724{738 (2010).  
12. Haach, V.G., Vasconcelos, G., and Lourenco, P.B.  Experimental analysis of reinforced concrete block  masonry walls subjected to in-plane cyclic loading",  J Struct. Eng., 136(4), pp. 452{62 (2010).  
13. Zilch, K., Schermer, D., and Scheuer, W. Behavior  of reinforced masonry walls made of hollow clay units  with concrete in_ll under combined loading", In: Proc.  14th International Brick and Block Masonry Conference  (CD-ROM) (2008).  
14. Da Porto, F., Mosele, F., and Modena, C. Experimental  testing of tall reinforced masonry walls  under out-of-plane actions", Construction & Building  Materials, 24(12), pp. 2559{2571 (2010). DOI:  10.1016/j.conbuildmat.2010.05.020 
 15. Da Porto, F., Mosele, F., and Modena, C. Cyclic  out-of-plane behavior of tall reinforced masonry walls  under P-_ effects", Eng. Struct., 33(2), pp. 287{297  (2010). DOI: 10.1016/j.engstruct.2010.10.004  
16. Shing, P.B., Schuller, M., and Hoskere, V.S. In-plane  resistance of reinforced masonry shear walls", J Struct.  Eng., 116(3), pp. 619{40 (1990).  
17. Lourenco, P.B., Rots, J.G., and Blaauwendraad, J.J.  Continuum model for masonry: parameter estimation  and validation", J Struct. Eng., 124(6), pp. 642{52  (1998).  
18. Haach, V.G., Vasconcelos, G., and Lourenco, P.B.  Parametric study of masonry walls subjected to  in-plane loading through numerical modeling", Eng.  Struct., 3(4), pp. 1377{89 (2011).  19. DISwall, Developing Innovative Systems for Reinforced  Masonry Walls, COOP-CT-2005-018120 (2008).  
20. Da Porto, F., Mosele, F., and Modena, C. Compressive  behavior of a new reinforced masonry system",  Materials and Structures, 44, pp. 565{581 (2010). DOI:  10.1617/s11527-010-9649-x  
21. Da Porto, F., Guidi, G., Garbin, E., and Modena,  C. In-plane behavior of clay masonry walls: Experimental  testing and _nite-element modeling", Journal  of Structural Engineering, 136(11), pp. 1379{1392  (2012). DOI: 10.1061/ asce st.1943-541x.0000236  
22. Toma_zevi_e, M., Lutman, M., and Bosiljkov, V. Robustness  of hollow clay masonry units and seismic  behavior of masonry walls", Construction and Building  Materials, 20(10), pp. 1028{39 (2006), DOI:  10.1016/j.conbuildmat.2005.05.001  
23. Lourenco, P.B. Computational method for masonry  structure", Ph.D Dissertation, Delft University of  Technology (1996).  
24. Eta/FEMB-PC (Finite Element Model Builder), Version  28, USER'S MANUAL, a pre and post-processor  for use with LS-DYNA software (2001).  
25. Toma_zevi_c, M. and Lutman, M. Seismic behavior of  masonry walls: modeling of hysteretic rules", J Struct  Eng., 122(9), pp. 1048{1054 (1996).  B. Shakarami et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2790{2807 2807  
26. Lourenco, P.B., Rots, J.G., and Blaauwendraad, J.  Continuum model for masonry: parameter estimation  and validation", J Struc Eng., 124(6), pp. 642{52  (1998).  
27. Bala, S., Tie-Break Contacts in LS-DYNA, Live more  Software, USA (2007).  
28. Lourenco, P.B. and Rots, J.G. Multisurface interface  model for analysis of masonry structures", J Eng.  Mech, 123(7), pp. 660{668 (1997).  
29. Lourenco, P.B. Computational method for masonry  structures", Ph.D. Dissertation, Delft University of  Technology (1996).  30. Priestley, M.J.N., Calvi, G.M., and Kowalsky, M.J.,  Displacement-Based Seismic Design of Structures,  Pavia, Italy: IUSS Press (2007).  
31. Toma_zevi_e, M. and Zarnic, R. The behavior of horizontally  reinforced masonry walls subjected to cyclic  lateral in-plane load reversals", In: Proc. 8th European  Conf. of Earthquake Engineering (1984).  
32. Zhang, S., Yang, D., Sheng, Y., et al. Numerical  modeling of FRP-reinforced masonry walls under inplane  seismic loading", Construction and Building  Materials, 134, pp. 649{663 (2017).  
33. Shabdin, M., Khajeh Ahmad Attari, N., and Zargaran  M. Experimental study on seismic behavior of Un-  Reinforced Masonry (URM) brick walls strengthened  with shotcrete", Springer, J. of Earthquake Eng,  340(18), pp. 123{131 (2018).  
34. Sandoval, C., Calderon, S., and Almazan, J.L. Experimental  cyclic response assessment of partially grouted  reinforced clay brick masonry walls", Springer, J. of  Earthquake Eng, 308(18), pp. 587{596 (2018).  
35. Farooq, S.H., Shahid, I., and Ilyas, M. Seismic performance  of masonry strengthened with steel strips",  KSCE Journal of Civil Engineering, 18(7), pp. 2170{  2180 (2014).