References:
1. Yarpuzlu, B., Ayyildiz, M., Enis Tok, O., et al. "Correlation between the mechanical and histological properties of liver tissue", J. Mech. Beh. Biomed. Mat., 29, pp. 403-416 (2014).
2. Matin Ghahfarokhi, Z., Moghimi Zand, M., and Salmani Tehrani, M. "Analytical solution and simulation of the liver tissue behavior under uniaxial compression test", Modares Mech. Eng., 16(9), pp. 47- 56 (1395) (in Persion).
3. www.liverfoundation.org.
4. Matin Ghahfarokhi, Z., Moghimi Zand, M., and Salmani Tehrani, M. "Proposing a new nonlinear hyperviscoelastic constitutive model to describe uniaxial compression behavior and dependence of stressrelaxation response on strain levels for isotropic tissueequivalent material", Sci. Iran., 26(6), pp. 3202-3270 (2019).
5. Samur, E., Sedef, M., Basdogan, C., and et al. "A robotic indenter for minimally invasive measurement and characterization of soft tissue response", Med. Image. Anal., 11, pp. 361-373 (2007).
6. Dehghani Ashkezari, H., Mirbagheri, A., Behzadipour, S., et al. "A mass-spring-damper model for real time simulation of the frictional grasping interactions between surgical tools and large organs", Sci. Iran, B., 22(5), pp. 1833-1841 (2015).
7. Lorente, D., Martinez-Martinez, F., Ruperez, M.J. et al. "A framework for modeling the biomechanical behavior of the human liver during breathing in real time using machine learning", Expert Syst. Appl., 71, pp. 342-357 (2017).
8. Baxa, J., Ferdova, E., and Ferda, J. "PET/MRI of the thorax, abdomen and retroperitoneum: Benefits of the breathing-synchronized scanning", Eur. J. Radiol., 94, pp. A35-A43 (2017).
9. Mescher, A.L., Junqueira's Basic Histology, McGraw Hill companies.
10. Dhont, J., Vandemeulebroucke, J., Burghelea, M., et. al. "The long-and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment", Radiother. Oncol., 126(2), pp. 339-346 (2018).
11. Keall, P.J., Mageras, C.S., Balter, J.M., et al. "The management of respiratory motion in radiation oncology report of AAPM task group 76", Med. Phys., 33, pp. 3874-3900 (2006).
12. Srimathveeravalling, G., Leger, J., Ezell, P., et al. "A study of porcine liver motion during respiration for improving targeting in image-guided needle placements", Int. J. CARS., 8, pp. 15-27 (2013).
13. Saghaei Nooshabadi, Z., Abdi, E., Farahmand, F., et al. "A meshless method to simulate interactions between large soft tissue and a surgical grasper", Sci Iran., B., 23(1), pp. 295-300 (2016).
14. Nutu, E., Petrescu, H.A., Vlasceanu, D., et al. "Development of a finite element model for lung tumor displacements during breathing", Mater. Today, 3, pp. 1091-1096 (2016).
15. Zehtabian, M., Faghihi, R., Mosleh-Shirazi, M.A., et al. "A fast model for prediction of respiratory lung motion for image-guided radiotherapy: A feasibility study", Iran J. Radiat. Res., 10(2), pp. 73-81 (2012).
16. Back, A. "Systemativ evaluation of lung-tumor motion using four-dimensional computed tomography", Phys. Med., 52(1), pp. 3-4 (2018).
17. Paulsen, F. and Waschke, J., Sobatta: Atlas der Anatomie des Menschen, Urban & Fischer Verlag (2010).
18. Fung, Y.C., Biomechanics, Mechanical Properties of Living Tissues, Second Edn., Springer-Verlag, New York (1993).
19. Nava, A., Mazza, E., Furrer, M., et al. "In vivo mechanical characterization of human liver", Med. Image Anal., 12, pp. 203-216 (2008).
20. Suwelack, S., Roehl, S., Dillmann, R., et al. "Quadratic corotated finite elements for real-time soft tissue gistration", In MICCAI workshop: Comput. Biomech. Med. (2011).
21. Gordic, S., Ayache, J.B., Kennedy, P., et al. "Value of tumor stiffness measured with MR elastography for assessment of response of hepatocellular carcinoma to locoregional therapy", Abdom. Radiol., 42(6), pp. 1685-1694 (2017).
22. Leroy, A., Payan, Y., Voirin, D., et al. "Finite element model of the liver for computer-assisted hepatic tumor ablation", 5th Int. Symp. on Computer Meth. Biomech. and Biomed. Eng., Roma (2001).
23. Brock, K.K., Hollister, S.J., Dawson, L.A., et al. "Technical note: Creating a four-dimensional of the liver using finite analysis", Med. Phys., 29(7), pp. 1403-1405 (2002). http://onlinelibrary.Wiley.Com/. Doi/10.1118/1.1485055/full.