The linear switched reluctance machine (LSRM) has all advantages of rotary switched reluctance machine including simple and rugged structure, absence of magnetic material and windings on translator, high reliability and appropriate performance over a wide range of speed. Like rotary switched reluctance motor with segmental rotor, segmental translator linear switched reluctance motor (STLSRM) has capability to produce higher output power/weight in comparison to the conventional linear switched reluctance motors. Due to high advantages of the STLSRM drive, various control algorithms including current control, model predictive control, direct force control, universal control and force distribution function are investigated for the first time to control the instantaneous thrust of this motor. Applying these algorithms to a typical three-phase STLSRM, simulation results are presented and they are compared together from the force ripple reduction point of view.
Todd, R., Valdivia, V., Bryan, F.J., et al. Behavioural modelling of a switched reluctance motor drive for aircraft power systems", IET Electr. Syst. Transp., 4(4), pp. 107{113 (2014).
Zhu, J., Cheng, K.W.E., Xue, X., et al. Design of a new enhanced torque in-wheel switched reluctance motor with divided teeth for electric vehicles", IEEE Trans. Magn., 53(11), 2501504 (2017).
Mishra, A.K. and Singh, B. Solar photovoltaic array dependent dual output converter based water pumping using switched reluctance motor drive", IEEE Trans. Ind. Appl., 53(6), pp. 5615{5623 (2017).
Wang, D., Wang, X., and Du, X.F. Design and comparison of a high force density dual-side linear switched reluctance motor for long rail propulsion application with low cost", IEEE Trans. Magn., 53(6), 7207204 (2017).
Sahin, C., Amac, A.E., Karacor, M., et al. Reducing torque ripple of switched reluctance machines by relocation of rotor moulding clinches", IET Electr. Power Appl., 6(9), pp. 753{760 (2012).
Ma, C. and Qu, L. Multiobjective optimization of switched reluctance motors based on design of experiments and particle swarm optimization", IEEE Trans. Energy Convers., 30(3), pp. 1144{1153 (2015). 7. Ye, J., Bilgin, B., and Emadi, A. An o_ine torque sharing function for torque ripple reduction in switched reluctance motor drives", IEEE Trans. Energy Convers., 30(2), pp. 726{735 (2015). 8. Deng, X., Mecrow, B., Wu, H., et al. Design and development of low torque ripple variable-speed drive system with six-phase switched reluctance motors", IEEE Trans. Energy Convers., 33(1), pp. 420{429 (2018). 9. Bae, H.K., Lee, B.S., Vijayraghavan, P., et al. A linear switched reluctance motor: converter and control", IEEE Trans. Ind. Appl., 36(5), pp. 1351{1359 (2000). 10. Gan, W.C., Cheung, N.C., and Qiu, L. Position control of linear switched reluctance motors for high-precision applications", IEEE Trans. Ind. Appl., 39(5), pp. 1350{1362 (2003). 11. Lim, H.S. and Krishnan, R. Ropeless elevator with linear switched reluctance motor drive actuation systems", IEEE Trans. Ind. Electron., 54(4), pp. 2209{ 2218 (2007). 12. Zhao, S.W., Cheung, N.C., Gan, W.C., et al. Passivity-based control of linear switched reluctance motors with robustness consideration", IET Electr. Power Appl., 2(3), pp. 164{171 (2008). 13. Lim, H.S., Krishnan, R., and Lobo, N.S. Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives", IEEE Trans. Ind. Electron., 55(2), pp. 534{542 (2008). 14. Zhao, S.W., Cheung, N.C., Gan, W.C., et al. Highprecision position control of a linear-switched reluctance motor using a self-tuning regulator", IEEE Trans. Power Electron., 25(11), pp. 2820{2827 (2010). 15. Pan, J.F., Cheung, N.C., and Zou, Y. An improved force distribution function for linear switched reluctance motor on force ripple minimization with nonlinear inductance modeling", IEEE Trans. Magn., 48(11), pp. 3064{3067 (2012). 16. Pan, J.F., Zou, Y., and Cao, G. Adaptive controller for the double-sided linear switched reluctance motor based on the nonlinear inductance modeling", IET Electr. Power Appl., 7(1), pp. 1{15 (2013). 17. Masoudi, S., Feyzi, M.R., and Shari_an, M.B. Force ripple and jerk minimisation in double sided linear switched reluctance motor used in elevator application", IET Electr. Power Appl., 10(6), pp. 508{516 (2016). 18. Ganji, B. and Askari, M.H. Analysis and modeling of di_erent topologies for linear switched reluctance motor using _nite element method", Alexandria Engineering Journal, 55, pp. 2531{2538 (2016). 19. Wang, D., Du, X., Zhang, D., et al. Design, optimization, and prototyping of segmental-type linear switched-reluctance motor with a toroidally wound mover for vertical propulsion application", IEEE Trans. Ind. Electron., 65(2), pp. 1865{1874 (2018). 20. Krishnan, R. Switched reluctance motor drives: modeling, simulation, analysis, design, and applications", CRC press (2001). 21. Vijayakumar, K., Karthikeyan, R., Paramasivam, S., et al. Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review", IEEE Trans. Magn., 44(12), pp. 4605{4817 (2008). 22. Cao, G., Chen, N., Huang, S., Xiao, S., and He, J. Nonlinear modeling of the ux linkage in 2-D plane for the planar switched reluctance motor", IEEE Trans. Magn., 54(11), Article no. 8206605 (2018). 23. Cao, G., Li, L., Huang, S., et al. Nonlinear modeling of electromagnetic forces for the planar switched reluctance motor", IEEE Trans. Magn., 51(11), 8206605 (2015). A. Zare Chavoshi and B. Ganji/Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3140{3149 3149 24. Arehpanahi, M. and Sanaei, V. Optimal design of interior permanent magnet motor with wide ux weakening range", Scientia Iranica, 22(3), pp. 1045{1051 (2015). 25. Arehpanahi, M. and Kashe_, H. Cogging torque reduction of interior permanent magnet synchronous motor (IPMSM)", Scientia Iranica, 25(3), pp. 1471{ 1477 (2018). 26. Cheok, D. and Fukuda, Y. A new torque and ux control method for switched reluctance motor drives", IEEE Trans. Power Electron., 17(4), pp. 543{557 (2002). 27. Mikail, R., Husain, I., Sozer, Y., et al., Torque ripple minimization of switched reluctance machines through current pro_ling", IEEE Trans. Ind. Appl., 49(3), pp. 1258{1267 (2013). 28. Shao, B. and Emadi, A. A digital PWM control for switched reluctance motor drives", IEEE Vehicle Power and Propulsion Conference, Lille, France, pp. 1{6 (2010). 29. Ruiwei, Z., Xisen, Q., Liping, J., et al. An adaptive sliding mode current control for switched reluctance motor", IEEE Conference and Expo Transportation Electri_cation Asia-Paci_c (ITEC Asia-Paci_c), Beijing, country, pp. 1{6 (2014). 30. Schulz, S.E. and Rahman, K.M. High-performance digital PI current regulator for EV switched reluctance motor drives", IEEE Trans. Ind. Appl., 39(4), pp. 1118{1126 (2003). 31. Lin, Z., Reay, D., Williams, B., et al. Highperformance current control for switched reluctance motors based on on-line estimated parameters", IET Electr. Power Appl., 4(1), pp. 67{74 (2010). 32. Ahmad, S.S. and Narayanan, G. Linearized modeling of switched reluctance motor for closed-loop current control", IEEE Trans. Ind. Appl., 52(4), pp. 3146{ 3158 (2016). 33. Li, X. and Shamsi, P. Inductance surface learning for model predictive current control of switched reluctance motors", IEEE Trans. Transport. Electri_c., 1(3), pp. 287{297 (2015). 34. Mikail, R., Husain, I., Sozer, Y., et al. A _xed switching frequency predictive current control method for switched reluctance machines", IEEE Trans. Ind. Appl., 50(6), pp. 3717{3726 (2014). 35. Pestana, L.M., Calado, M.R.A., and Mariano, S. Direct instantaneous thrust control of 3 phase linear switched reluctance actuator", International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, pp. 436{440 (2012). 36. Sozer, Y., Husain, I., and Torrey, D.A. Guidance in selecting advanced control techniques for switched reluctance machine drives in emerging applications", IEEE Trans. Ind. Appl., 51(6), pp. 4505{4514 (2015). 37. Inderka, R.B. and DeDoncker, R.W.A. DITC-direct instantaneous torque control of switched reluctance drives", IEEE Trans. Ind. Appl., 39(4), pp. 1046{1051 (2003). 38. Xue, X.D., Cheng, K.W.E., and Ho, S.L. Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives", IEEE Trans. Power Electron., 24(9), pp. 2076{2090 (2009). 39. Gan, W., Cheung, N.C., and Li, Q. Position control of linear switched reluctance motors for high-precision applications", IEEE Trans. Ind. Appl., 39(5), pp. 1350{1362 (2003). 40. Husain, I. and Ehsani, M. Torque ripple minimization in switched reluctance motor drives by PWM current control", IEEE Trans. Power Electron., 11(1), pp. 83{ 88 (1996). 41. Ye, J., Bilgin, B., and Emadi, A. An extendedspeed low-ripple torque control of switched reluctance motor drives", IEEE Trans. Power Electron., 30(3), pp. 1457{1470 (2015). 42. Husain, I. Minimization of torque ripple in SRM drives", IEEE Trans. Ind. Electron., 49(1), pp. 28{39 (2002). 43. Mademlis, C. and Kioskeridis, I. Performance optimization in switched reluctance motor drives with online commutation angle control", IEEE Trans. Energy Convers., 18(3), pp. 448{457 (2003).
Zare Chavoshi, A. and Ganji, B. (2020). Instantaneous thrust control of linear switched reluctance motors with segmental translator. Scientia Iranica, 27(6), 3140-3149. doi: 10.24200/sci.2019.51380.2144
MLA
Zare Chavoshi, A. , and Ganji, B. . "Instantaneous thrust control of linear switched reluctance motors with segmental translator", Scientia Iranica, 27, 6, 2020, 3140-3149. doi: 10.24200/sci.2019.51380.2144
HARVARD
Zare Chavoshi, A., Ganji, B. (2020). 'Instantaneous thrust control of linear switched reluctance motors with segmental translator', Scientia Iranica, 27(6), pp. 3140-3149. doi: 10.24200/sci.2019.51380.2144
CHICAGO
A. Zare Chavoshi and B. Ganji, "Instantaneous thrust control of linear switched reluctance motors with segmental translator," Scientia Iranica, 27 6 (2020): 3140-3149, doi: 10.24200/sci.2019.51380.2144
VANCOUVER
Zare Chavoshi, A., Ganji, B. Instantaneous thrust control of linear switched reluctance motors with segmental translator. Scientia Iranica, 2020; 27(6): 3140-3149. doi: 10.24200/sci.2019.51380.2144